Update app.py
Browse files
app.py
CHANGED
|
@@ -1,85 +1,80 @@
|
|
| 1 |
-
#
|
| 2 |
-
"""
|
| 3 |
-
Robust Gradio app for CNN-LSTM fault classification.
|
| 4 |
-
|
| 5 |
-
Features added:
|
| 6 |
-
- Prefer local model file; optionally download from Hugging Face Hub if HUB_REPO/HUB_FILENAME set.
|
| 7 |
-
- If no model found, app still starts but prediction functions return friendly message.
|
| 8 |
-
- Port selection:
|
| 9 |
-
* If GRADIO_SERVER_PORT or PORT env var is set, try that.
|
| 10 |
-
* Otherwise find a free ephemeral port and use it.
|
| 11 |
-
* If binding fails, fall back to demo.launch() with no explicit port (Gradio picks).
|
| 12 |
-
- Reduces TF logging noise via TF_CPP_MIN_LOG_LEVEL (optional).
|
| 13 |
-
"""
|
| 14 |
import os
|
| 15 |
-
import
|
|
|
|
| 16 |
import numpy as np
|
| 17 |
import pandas as pd
|
| 18 |
import gradio as gr
|
| 19 |
-
from tensorflow.keras.models import load_model
|
| 20 |
from huggingface_hub import hf_hub_download
|
| 21 |
|
| 22 |
-
#
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
HUB_FILENAME = "" # e.g., "lstm_cnn_model.h5"
|
| 29 |
|
| 30 |
def download_from_hub(repo: str, filename: str):
|
| 31 |
try:
|
| 32 |
-
print(f"Downloading {filename} from {repo} ...")
|
| 33 |
path = hf_hub_download(repo_id=repo, filename=filename)
|
| 34 |
-
print("Downloaded to:", path)
|
| 35 |
return path
|
| 36 |
except Exception as e:
|
| 37 |
-
print("
|
| 38 |
return None
|
| 39 |
|
| 40 |
-
def
|
| 41 |
-
|
| 42 |
-
if os.path.exists(LOCAL_MODEL_FILE):
|
| 43 |
-
return LOCAL_MODEL_FILE
|
| 44 |
-
# Try env override for local path (handy in Spaces)
|
| 45 |
-
alt = os.environ.get("MODEL_FILE_PATH")
|
| 46 |
-
if alt and os.path.exists(alt):
|
| 47 |
-
return alt
|
| 48 |
-
# Try hub
|
| 49 |
-
if HUB_REPO and HUB_FILENAME:
|
| 50 |
-
return download_from_hub(HUB_REPO, HUB_FILENAME)
|
| 51 |
-
return None
|
| 52 |
-
|
| 53 |
-
def try_load_model(path):
|
| 54 |
try:
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
def prepare_input_array(arr, n_timesteps=1, n_features=None):
|
| 66 |
arr = np.array(arr)
|
| 67 |
if arr.ndim == 1:
|
| 68 |
if n_features is None:
|
| 69 |
-
# assume arr is flattened timesteps*features
|
| 70 |
return arr.reshape(1, n_timesteps, -1)
|
| 71 |
return arr.reshape(1, n_timesteps, int(n_features))
|
| 72 |
elif arr.ndim == 2:
|
| 73 |
-
# treat as (timesteps, features) -> add batch dim
|
| 74 |
-
if arr.shape[0] == 1:
|
| 75 |
-
return arr.reshape(1, arr.shape[1], -1)
|
| 76 |
return arr
|
| 77 |
else:
|
| 78 |
return arr
|
| 79 |
|
| 80 |
def predict_text(text, n_timesteps=1, n_features=None):
|
| 81 |
-
if
|
| 82 |
-
|
|
|
|
|
|
|
| 83 |
try:
|
| 84 |
arr = np.fromstring(text, sep=',')
|
| 85 |
x = prepare_input_array(arr, n_timesteps=int(n_timesteps), n_features=(int(n_features) if n_features else None))
|
|
@@ -90,8 +85,10 @@ def predict_text(text, n_timesteps=1, n_features=None):
|
|
| 90 |
return f"预测失败: {e}"
|
| 91 |
|
| 92 |
def predict_csv(file, n_timesteps=1, n_features=None):
|
| 93 |
-
if
|
| 94 |
-
|
|
|
|
|
|
|
| 95 |
try:
|
| 96 |
df = pd.read_csv(file.name)
|
| 97 |
X = df.values
|
|
@@ -103,13 +100,16 @@ def predict_csv(file, n_timesteps=1, n_features=None):
|
|
| 103 |
except Exception as e:
|
| 104 |
return {"error": f"预测失败: {e}"}
|
| 105 |
|
| 106 |
-
# Gradio UI
|
| 107 |
with gr.Blocks() as demo:
|
| 108 |
-
gr.Markdown("# CNN-LSTM Fault Classification")
|
| 109 |
-
if
|
| 110 |
-
gr.Markdown("
|
| 111 |
else:
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
| 113 |
with gr.Row():
|
| 114 |
file_in = gr.File(label="上传 CSV(每行 = 一个样本)")
|
| 115 |
text_in = gr.Textbox(lines=2, placeholder="粘贴逗号分隔的一行特征,例如: 0.1,0.2,0.3,...")
|
|
@@ -128,36 +128,15 @@ with gr.Blocks() as demo:
|
|
| 128 |
|
| 129 |
btn.click(run_predict, inputs=[file_in, text_in, n_ts, n_feat], outputs=[out_text, out_json])
|
| 130 |
|
| 131 |
-
#
|
| 132 |
-
def
|
| 133 |
-
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
| 134 |
-
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
| 135 |
-
s.bind(('', 0))
|
| 136 |
-
addr, port = s.getsockname()
|
| 137 |
-
s.close()
|
| 138 |
-
return port
|
| 139 |
-
|
| 140 |
-
def get_desired_port():
|
| 141 |
-
# priority: GRADIO_SERVER_PORT -> PORT -> auto find
|
| 142 |
-
p = os.environ.get("GRADIO_SERVER_PORT") or os.environ.get("PORT")
|
| 143 |
-
if p:
|
| 144 |
-
try:
|
| 145 |
-
return int(p)
|
| 146 |
-
except:
|
| 147 |
-
pass
|
| 148 |
-
# fallback to ephemeral free port
|
| 149 |
-
return find_free_port()
|
| 150 |
-
|
| 151 |
-
if __name__ == '__main__':
|
| 152 |
-
port = None
|
| 153 |
try:
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
|
|
|
| 1 |
+
# app.py -- Spaces-ready robust version for lstm_cnn model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import os
|
| 3 |
+
import threading
|
| 4 |
+
import traceback
|
| 5 |
import numpy as np
|
| 6 |
import pandas as pd
|
| 7 |
import gradio as gr
|
|
|
|
| 8 |
from huggingface_hub import hf_hub_download
|
| 9 |
|
| 10 |
+
# Use Keras model loader (change if you have PyTorch)
|
| 11 |
+
from tensorflow.keras.models import load_model
|
| 12 |
+
|
| 13 |
+
# ---------------- Config ----------------
|
| 14 |
+
LOCAL_MODEL_FILE = os.environ.get("LOCAL_MODEL_FILE", "lstm_cnn_model.h5")
|
| 15 |
+
HUB_REPO = os.environ.get("HUB_REPO", "") # optional: "username/repo"
|
| 16 |
+
HUB_FILENAME = os.environ.get("HUB_FILENAME", "") # optional: "lstm_cnn_model.h5"
|
| 17 |
+
# ----------------------------------------
|
| 18 |
|
| 19 |
+
MODEL = None
|
| 20 |
+
MODEL_READY = False
|
| 21 |
+
MODEL_LOAD_ERROR = None
|
|
|
|
| 22 |
|
| 23 |
def download_from_hub(repo: str, filename: str):
|
| 24 |
try:
|
| 25 |
+
print(f"[model] Downloading {filename} from {repo} ...", flush=True)
|
| 26 |
path = hf_hub_download(repo_id=repo, filename=filename)
|
| 27 |
+
print("[model] Downloaded to:", path, flush=True)
|
| 28 |
return path
|
| 29 |
except Exception as e:
|
| 30 |
+
print("[model] Hub download failed:", e, flush=True)
|
| 31 |
return None
|
| 32 |
|
| 33 |
+
def load_model_background():
|
| 34 |
+
global MODEL, MODEL_READY, MODEL_LOAD_ERROR
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
try:
|
| 36 |
+
model_path = None
|
| 37 |
+
if os.path.exists(LOCAL_MODEL_FILE):
|
| 38 |
+
model_path = LOCAL_MODEL_FILE
|
| 39 |
+
print(f"[model] Found local model: {model_path}", flush=True)
|
| 40 |
+
elif HUB_REPO and HUB_FILENAME:
|
| 41 |
+
model_path = download_from_hub(HUB_REPO, HUB_FILENAME)
|
| 42 |
+
else:
|
| 43 |
+
print("[model] No local model file and no HUB_REPO/HUB_FILENAME configured.", flush=True)
|
| 44 |
+
|
| 45 |
+
if model_path is None:
|
| 46 |
+
raise FileNotFoundError("Model file not found locally or on Hugging Face Hub.")
|
| 47 |
+
|
| 48 |
+
print(f"[model] Loading model from {model_path} ...", flush=True)
|
| 49 |
+
MODEL = load_model(model_path)
|
| 50 |
+
MODEL_READY = True
|
| 51 |
+
print("[model] Model loaded OK.", flush=True)
|
| 52 |
+
except Exception:
|
| 53 |
+
MODEL_LOAD_ERROR = traceback.format_exc()
|
| 54 |
+
MODEL_READY = False
|
| 55 |
+
print("[model] Error loading model:\\n", MODEL_LOAD_ERROR, flush=True)
|
| 56 |
+
|
| 57 |
+
# Start model loader in background so Gradio can bind to PORT immediately
|
| 58 |
+
loader = threading.Thread(target=load_model_background, daemon=True)
|
| 59 |
+
loader.start()
|
| 60 |
+
|
| 61 |
+
# ---------------- Helper functions ----------------
|
| 62 |
def prepare_input_array(arr, n_timesteps=1, n_features=None):
|
| 63 |
arr = np.array(arr)
|
| 64 |
if arr.ndim == 1:
|
| 65 |
if n_features is None:
|
|
|
|
| 66 |
return arr.reshape(1, n_timesteps, -1)
|
| 67 |
return arr.reshape(1, n_timesteps, int(n_features))
|
| 68 |
elif arr.ndim == 2:
|
|
|
|
|
|
|
|
|
|
| 69 |
return arr
|
| 70 |
else:
|
| 71 |
return arr
|
| 72 |
|
| 73 |
def predict_text(text, n_timesteps=1, n_features=None):
|
| 74 |
+
if not MODEL_READY:
|
| 75 |
+
if MODEL_LOAD_ERROR:
|
| 76 |
+
return f"模型加载失败:\\n{MODEL_LOAD_ERROR}"
|
| 77 |
+
return "模型尚���加载完成,请稍候(后台正在加载)。"
|
| 78 |
try:
|
| 79 |
arr = np.fromstring(text, sep=',')
|
| 80 |
x = prepare_input_array(arr, n_timesteps=int(n_timesteps), n_features=(int(n_features) if n_features else None))
|
|
|
|
| 85 |
return f"预测失败: {e}"
|
| 86 |
|
| 87 |
def predict_csv(file, n_timesteps=1, n_features=None):
|
| 88 |
+
if not MODEL_READY:
|
| 89 |
+
if MODEL_LOAD_ERROR:
|
| 90 |
+
return {"error": f"模型加载失败:\\n{MODEL_LOAD_ERROR}"}
|
| 91 |
+
return {"error": "模型尚未加载完成,请稍候(后台正在加载)。"}
|
| 92 |
try:
|
| 93 |
df = pd.read_csv(file.name)
|
| 94 |
X = df.values
|
|
|
|
| 100 |
except Exception as e:
|
| 101 |
return {"error": f"预测失败: {e}"}
|
| 102 |
|
| 103 |
+
# ---------------- Gradio UI ----------------
|
| 104 |
with gr.Blocks() as demo:
|
| 105 |
+
gr.Markdown("# CNN-LSTM Fault Classification (Spaces)")
|
| 106 |
+
if MODEL_READY:
|
| 107 |
+
gr.Markdown("模型已加载 ✅")
|
| 108 |
else:
|
| 109 |
+
if MODEL_LOAD_ERROR:
|
| 110 |
+
gr.Markdown("**模型加载失败**,请查看运行日志(下方可能有堆栈)。")
|
| 111 |
+
else:
|
| 112 |
+
gr.Markdown("模型正在后台加载(不会阻塞应用启动),请稍候。")
|
| 113 |
with gr.Row():
|
| 114 |
file_in = gr.File(label="上传 CSV(每行 = 一个样本)")
|
| 115 |
text_in = gr.Textbox(lines=2, placeholder="粘贴逗号分隔的一行特征,例如: 0.1,0.2,0.3,...")
|
|
|
|
| 128 |
|
| 129 |
btn.click(run_predict, inputs=[file_in, text_in, n_ts, n_feat], outputs=[out_text, out_json])
|
| 130 |
|
| 131 |
+
# ---------------- Launch (Spaces-friendly) ----------------
|
| 132 |
+
def get_port():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
try:
|
| 134 |
+
return int(os.environ.get("PORT", 7860))
|
| 135 |
+
except:
|
| 136 |
+
return 7860
|
| 137 |
+
|
| 138 |
+
if __name__ == "__main__":
|
| 139 |
+
port = get_port()
|
| 140 |
+
print(f"[app] Starting Gradio on 0.0.0.0:{port}", flush=True)
|
| 141 |
+
# Do NOT use share=True on Spaces
|
| 142 |
+
demo.launch(server_name="0.0.0.0", server_port=port, show_error=True, enable_queue=True)
|
|
|