|
""" |
|
lstm_cnn_app.py |
|
Gradio app to serve the CNN-LSTM fault classification model. |
|
|
|
Usage: |
|
- Place a local model file named by LOCAL_MODEL_FILE in the same repo, or |
|
- Set HUB_REPO and HUB_FILENAME to a public Hugging Face model repo + filename, |
|
and the app will download it at startup using hf_hub_download. |
|
""" |
|
import os |
|
import numpy as np |
|
import pandas as pd |
|
import gradio as gr |
|
from tensorflow.keras.models import load_model |
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
LOCAL_MODEL_FILE = "lstm_cnn_model.h5" |
|
HUB_REPO = "" |
|
HUB_FILENAME = "" |
|
|
|
def get_model_path(): |
|
if os.path.exists(LOCAL_MODEL_FILE): |
|
return LOCAL_MODEL_FILE |
|
if HUB_REPO and HUB_FILENAME: |
|
try: |
|
print(f"Downloading {HUB_FILENAME} from {HUB_REPO} ...") |
|
return hf_hub_download(repo_id=HUB_REPO, filename=HUB_FILENAME) |
|
except Exception as e: |
|
print("Failed to download from hub:", e) |
|
return None |
|
|
|
MODEL_PATH = get_model_path() |
|
MODEL = None |
|
if MODEL_PATH: |
|
try: |
|
MODEL = load_model(MODEL_PATH) |
|
print("Loaded model:", MODEL_PATH) |
|
except Exception as e: |
|
print("Failed to load model:", e) |
|
MODEL = None |
|
else: |
|
print("No model found. Please upload a model named", LOCAL_MODEL_FILE, "or set HUB_REPO/HUB_FILENAME.") |
|
|
|
def prepare_input_array(arr, n_timesteps=1, n_features=None): |
|
arr = np.array(arr) |
|
if arr.ndim == 1: |
|
if n_features is None: |
|
return arr.reshape(1, n_timesteps, -1) |
|
return arr.reshape(1, n_timesteps, n_features) |
|
elif arr.ndim == 2: |
|
return arr |
|
else: |
|
return arr |
|
|
|
def predict_text(text, n_timesteps=1, n_features=None): |
|
if MODEL is None: |
|
return "模型未加载,请上传或配置模型。" |
|
arr = np.fromstring(text, sep=',') |
|
x = prepare_input_array(arr, n_timesteps=int(n_timesteps), n_features=(int(n_features) if n_features else None)) |
|
probs = MODEL.predict(x) |
|
label = int(np.argmax(probs, axis=1)[0]) |
|
return f"预测类别: {label} (概率: {float(np.max(probs)):.4f})" |
|
|
|
def predict_csv(file, n_timesteps=1, n_features=None): |
|
if MODEL is None: |
|
return {"error": "模型未加载,请上传或配置模型。"} |
|
df = pd.read_csv(file.name) |
|
X = df.values |
|
if n_features: |
|
X = X.reshape(X.shape[0], int(n_timesteps), int(n_features)) |
|
preds = MODEL.predict(X) |
|
labels = preds.argmax(axis=1).tolist() |
|
return {"labels": labels, "probs": preds.tolist()} |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# CNN-LSTM Fault Classification") |
|
gr.Markdown("上传 CSV(每行一个样本)或粘贴逗号分隔的一行特征进行预测。") |
|
with gr.Row(): |
|
file_in = gr.File(label="上传 CSV(每行 = 一个样本)") |
|
text_in = gr.Textbox(lines=2, placeholder="粘贴逗号分隔的一行特征,例如: 0.1,0.2,0.3,...") |
|
n_ts = gr.Number(value=1, label="timesteps (整型)") |
|
n_feat = gr.Number(value=None, label="features (可选,留空尝试自动推断)") |
|
btn = gr.Button("预测") |
|
out_text = gr.Textbox(label="单样本预测输出") |
|
out_json = gr.JSON(label="批量预测结果 (labels & probs)") |
|
|
|
def run_predict(file, text, n_timesteps, n_features): |
|
if file is not None: |
|
return "CSV 预测完成", predict_csv(file, n_timesteps, n_features) |
|
if text: |
|
return predict_text(text, n_timesteps, n_features), {} |
|
return "请提供 CSV 或特征文本", {} |
|
|
|
btn.click(run_predict, inputs=[file_in, text_in, n_ts, n_feat], outputs=[out_text, out_json]) |
|
|
|
if __name__ == '__main__': |
|
demo.launch(server_name='0.0.0.0', server_port=7861) |
|
|