Spaces:
Running
Running
Clémentine
commited on
Commit
•
6e56e0d
1
Parent(s):
c212cb7
reorg to simplify nav in code base
Browse files- app.py +23 -37
- src/assets/hardcoded_evals.py +1 -1
- src/assets/text_content.py +7 -6
- src/{display_models/modelcard_filter.py → filters.py} +40 -0
- src/{display_models/get_model_metadata.py → get_model_info/apply_metadata_to_df.py} +4 -4
- src/get_model_info/get_metadata_from_hub.py +19 -0
- src/{display_models/model_metadata_flags.py → get_model_info/hardocded_metadata/flags.py} +0 -0
- src/{display_models/model_metadata_type.py → get_model_info/hardocded_metadata/types.py} +0 -0
- src/{display_models → get_model_info}/utils.py +0 -0
- src/load_from_hub.py +3 -18
- src/manage_collections.py +2 -2
- src/{display_models → plots}/plot_results.py +1 -1
- src/{display_models → plots}/read_results.py +2 -2
- src/rate_limiting.py +0 -13
app.py
CHANGED
@@ -17,16 +17,17 @@ from src.assets.text_content import (
|
|
17 |
LLM_BENCHMARKS_TEXT,
|
18 |
TITLE,
|
19 |
)
|
20 |
-
from src.
|
21 |
create_metric_plot_obj,
|
22 |
create_scores_df,
|
23 |
create_plot_df,
|
24 |
join_model_info_with_results,
|
25 |
HUMAN_BASELINES,
|
26 |
)
|
27 |
-
from src.
|
28 |
-
from src.
|
29 |
-
from src.
|
|
|
30 |
AutoEvalColumn,
|
31 |
EvalQueueColumn,
|
32 |
fields,
|
@@ -35,8 +36,8 @@ from src.display_models.utils import (
|
|
35 |
styled_warning,
|
36 |
)
|
37 |
from src.manage_collections import update_collections
|
38 |
-
from src.load_from_hub import get_all_requested_models, get_evaluation_queue_df, get_leaderboard_df
|
39 |
-
from src.
|
40 |
|
41 |
pd.set_option("display.precision", 1)
|
42 |
|
@@ -127,14 +128,8 @@ def add_new_eval(
|
|
127 |
return styled_error("Please select a model type.")
|
128 |
|
129 |
# Is the user rate limited?
|
130 |
-
|
131 |
-
if
|
132 |
-
error_msg = f"Organisation or user `{model.split('/')[0]}`"
|
133 |
-
error_msg += f"already has {num_models_submitted_in_period} model requests submitted to the leaderboard "
|
134 |
-
error_msg += f"in the last {RATE_LIMIT_PERIOD} days.\n"
|
135 |
-
error_msg += (
|
136 |
-
"Please wait a couple of days before resubmitting, so that everybody can enjoy using the leaderboard 🤗"
|
137 |
-
)
|
138 |
return styled_error(error_msg)
|
139 |
|
140 |
# Did the model authors forbid its submission to the leaderboard?
|
@@ -155,28 +150,19 @@ def add_new_eval(
|
|
155 |
if not model_on_hub:
|
156 |
return styled_error(f'Model "{model}" {error}')
|
157 |
|
158 |
-
model_info = api.model_info(repo_id=model, revision=revision)
|
159 |
-
|
160 |
-
size_pattern = size_pattern = re.compile(r"(\d\.)?\d+(b|m)")
|
161 |
try:
|
162 |
-
|
163 |
-
except
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
|
168 |
-
except AttributeError:
|
169 |
-
return 65
|
170 |
-
|
171 |
-
size_factor = 8 if (precision == "GPTQ" or "GPTQ" in model) else 1
|
172 |
-
model_size = size_factor * model_size
|
173 |
|
|
|
174 |
try:
|
175 |
license = model_info.cardData["license"]
|
176 |
except Exception:
|
177 |
-
license
|
178 |
|
179 |
-
# Were the model card and license filled?
|
180 |
modelcard_OK, error_msg = check_model_card(model)
|
181 |
if not modelcard_OK:
|
182 |
return styled_error(error_msg)
|
@@ -279,13 +265,13 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
279 |
|
280 |
NUMERIC_INTERVALS = {
|
281 |
"?": pd.Interval(-1, 0, closed="right"),
|
282 |
-
"
|
283 |
-
"
|
284 |
-
"
|
285 |
-
"
|
286 |
-
"
|
287 |
-
"
|
288 |
-
"
|
289 |
}
|
290 |
|
291 |
|
|
|
17 |
LLM_BENCHMARKS_TEXT,
|
18 |
TITLE,
|
19 |
)
|
20 |
+
from src.plots.plot_results import (
|
21 |
create_metric_plot_obj,
|
22 |
create_scores_df,
|
23 |
create_plot_df,
|
24 |
join_model_info_with_results,
|
25 |
HUMAN_BASELINES,
|
26 |
)
|
27 |
+
from src.get_model_info.apply_metadata_to_df import DO_NOT_SUBMIT_MODELS, ModelType
|
28 |
+
from src.get_model_info.get_metadata_from_hub import get_model_size
|
29 |
+
from src.filters import check_model_card
|
30 |
+
from src.get_model_info.utils import (
|
31 |
AutoEvalColumn,
|
32 |
EvalQueueColumn,
|
33 |
fields,
|
|
|
36 |
styled_warning,
|
37 |
)
|
38 |
from src.manage_collections import update_collections
|
39 |
+
from src.load_from_hub import get_all_requested_models, get_evaluation_queue_df, get_leaderboard_df
|
40 |
+
from src.filters import is_model_on_hub, user_submission_permission
|
41 |
|
42 |
pd.set_option("display.precision", 1)
|
43 |
|
|
|
128 |
return styled_error("Please select a model type.")
|
129 |
|
130 |
# Is the user rate limited?
|
131 |
+
user_can_submit, error_msg = user_submission_permission(model, users_to_submission_dates, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA)
|
132 |
+
if not user_can_submit:
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
return styled_error(error_msg)
|
134 |
|
135 |
# Did the model authors forbid its submission to the leaderboard?
|
|
|
150 |
if not model_on_hub:
|
151 |
return styled_error(f'Model "{model}" {error}')
|
152 |
|
|
|
|
|
|
|
153 |
try:
|
154 |
+
model_info = api.model_info(repo_id=model, revision=revision)
|
155 |
+
except Exception:
|
156 |
+
return styled_error("Could not get your model information. Please fill it up properly.")
|
157 |
+
|
158 |
+
model_size = get_model_size(model_info=model_info , precision= precision)
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
+
# Were the model card and license filled?
|
161 |
try:
|
162 |
license = model_info.cardData["license"]
|
163 |
except Exception:
|
164 |
+
return styled_error("Please select a license for your model")
|
165 |
|
|
|
166 |
modelcard_OK, error_msg = check_model_card(model)
|
167 |
if not modelcard_OK:
|
168 |
return styled_error(error_msg)
|
|
|
265 |
|
266 |
NUMERIC_INTERVALS = {
|
267 |
"?": pd.Interval(-1, 0, closed="right"),
|
268 |
+
"~1.5": pd.Interval(0, 2, closed="right"),
|
269 |
+
"~3": pd.Interval(2, 4, closed="right"),
|
270 |
+
"~7": pd.Interval(4, 9, closed="right"),
|
271 |
+
"~13": pd.Interval(9, 20, closed="right"),
|
272 |
+
"~35": pd.Interval(20, 45, closed="right"),
|
273 |
+
"~60": pd.Interval(45, 70, closed="right"),
|
274 |
+
"70+": pd.Interval(70, 10000, closed="right"),
|
275 |
}
|
276 |
|
277 |
|
src/assets/hardcoded_evals.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from src.
|
2 |
|
3 |
gpt4_values = {
|
4 |
AutoEvalColumn.model.name: model_hyperlink("https://arxiv.org/abs/2303.08774", "gpt4"),
|
|
|
1 |
+
from src.get_model_info.utils import AutoEvalColumn, model_hyperlink
|
2 |
|
3 |
gpt4_values = {
|
4 |
AutoEvalColumn.model.name: model_hyperlink("https://arxiv.org/abs/2303.08774", "gpt4"),
|
src/assets/text_content.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from src.
|
2 |
|
3 |
TITLE = """<h1 align="center" id="space-title">🤗 Open LLM Leaderboard</h1>"""
|
4 |
|
@@ -14,13 +14,14 @@ LLM_BENCHMARKS_TEXT = f"""
|
|
14 |
With the plethora of large language models (LLMs) and chatbots being released week upon week, often with grandiose claims of their performance, it can be hard to filter out the genuine progress that is being made by the open-source community and which model is the current state of the art.
|
15 |
|
16 |
## Icons
|
17 |
-
{ModelType.PT.to_str(" : ")} model
|
18 |
-
{ModelType.FT.to_str(" : ")} model
|
19 |
-
|
20 |
-
{ModelType.
|
|
|
21 |
If there is no icon, we have not uploaded the information on the model yet, feel free to open an issue with the model information!
|
22 |
|
23 |
-
|
24 |
(For ex, the model was trained on the evaluation data, and is therefore cheating on the leaderboard.)
|
25 |
|
26 |
## How it works
|
|
|
1 |
+
from src.get_model_info.hardocded_metadata.types import ModelType
|
2 |
|
3 |
TITLE = """<h1 align="center" id="space-title">🤗 Open LLM Leaderboard</h1>"""
|
4 |
|
|
|
14 |
With the plethora of large language models (LLMs) and chatbots being released week upon week, often with grandiose claims of their performance, it can be hard to filter out the genuine progress that is being made by the open-source community and which model is the current state of the art.
|
15 |
|
16 |
## Icons
|
17 |
+
{ModelType.PT.to_str(" : ")} model: new, base models, trained on a given corpora
|
18 |
+
{ModelType.FT.to_str(" : ")} model: pretrained models finetuned on more data
|
19 |
+
Specific fine-tune subcategories (more adapted to chat):
|
20 |
+
{ModelType.IFT.to_str(" : ")} model: instruction fine-tunes, which are model fine-tuned specifically on datasets of task instruction
|
21 |
+
{ModelType.RL.to_str(" : ")} model: reinforcement fine-tunes, which usually change the model loss a bit with an added policy.
|
22 |
If there is no icon, we have not uploaded the information on the model yet, feel free to open an issue with the model information!
|
23 |
|
24 |
+
"Flagged" indicates that this model has been flagged by the community, and should probably be ignored! Clicking the link will redirect you to the discussion about the model.
|
25 |
(For ex, the model was trained on the evaluation data, and is therefore cheating on the leaderboard.)
|
26 |
|
27 |
## How it works
|
src/{display_models/modelcard_filter.py → filters.py}
RENAMED
@@ -1,5 +1,8 @@
|
|
1 |
import huggingface_hub
|
2 |
from huggingface_hub import ModelCard
|
|
|
|
|
|
|
3 |
|
4 |
|
5 |
# ht to @Wauplin, thank you for the snippet!
|
@@ -24,3 +27,40 @@ def check_model_card(repo_id: str) -> tuple[bool, str]:
|
|
24 |
return False, "Please add a description to your model card, it is too short."
|
25 |
|
26 |
return True, ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import huggingface_hub
|
2 |
from huggingface_hub import ModelCard
|
3 |
+
from transformers import AutoConfig
|
4 |
+
|
5 |
+
from datetime import datetime, timedelta, timezone
|
6 |
|
7 |
|
8 |
# ht to @Wauplin, thank you for the snippet!
|
|
|
27 |
return False, "Please add a description to your model card, it is too short."
|
28 |
|
29 |
return True, ""
|
30 |
+
|
31 |
+
|
32 |
+
def is_model_on_hub(model_name: str, revision: str) -> bool:
|
33 |
+
try:
|
34 |
+
AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=False)
|
35 |
+
return True, None
|
36 |
+
|
37 |
+
except ValueError:
|
38 |
+
return (
|
39 |
+
False,
|
40 |
+
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
41 |
+
)
|
42 |
+
|
43 |
+
except Exception:
|
44 |
+
return False, "was not found on hub!"
|
45 |
+
|
46 |
+
|
47 |
+
def user_submission_permission(submission_name, users_to_submission_dates, rate_limit_period, rate_limit_quota):
|
48 |
+
org_or_user, _ = submission_name.split("/")
|
49 |
+
if org_or_user not in users_to_submission_dates:
|
50 |
+
return True, ""
|
51 |
+
submission_dates = sorted(users_to_submission_dates[org_or_user])
|
52 |
+
|
53 |
+
time_limit = (datetime.now(timezone.utc) - timedelta(days=rate_limit_period)).strftime("%Y-%m-%dT%H:%M:%SZ")
|
54 |
+
submissions_after_timelimit = [d for d in submission_dates if d > time_limit]
|
55 |
+
|
56 |
+
num_models_submitted_in_period = len(submissions_after_timelimit)
|
57 |
+
if num_models_submitted_in_period > rate_limit_quota:
|
58 |
+
error_msg = f"Organisation or user `{org_or_user}`"
|
59 |
+
error_msg += f"already has {num_models_submitted_in_period} model requests submitted to the leaderboard "
|
60 |
+
error_msg += f"in the last {rate_limit_period} days.\n"
|
61 |
+
error_msg += (
|
62 |
+
"Please wait a couple of days before resubmitting, so that everybody can enjoy using the leaderboard 🤗"
|
63 |
+
)
|
64 |
+
return False, error_msg
|
65 |
+
return True, ""
|
66 |
+
|
src/{display_models/get_model_metadata.py → get_model_info/apply_metadata_to_df.py}
RENAMED
@@ -6,9 +6,9 @@ from typing import List
|
|
6 |
from huggingface_hub import HfApi
|
7 |
from tqdm import tqdm
|
8 |
|
9 |
-
from src.
|
10 |
-
from src.
|
11 |
-
from src.
|
12 |
|
13 |
api = HfApi(token=os.environ.get("H4_TOKEN", None))
|
14 |
|
@@ -41,7 +41,7 @@ def get_model_metadata(leaderboard_data: List[dict]):
|
|
41 |
request = json.load(f)
|
42 |
model_type = model_type_from_str(request["model_type"])
|
43 |
model_data[AutoEvalColumn.model_type.name] = model_type.value.name
|
44 |
-
model_data[AutoEvalColumn.model_type_symbol.name] = model_type.value.symbol
|
45 |
model_data[AutoEvalColumn.license.name] = request["license"]
|
46 |
model_data[AutoEvalColumn.likes.name] = request["likes"]
|
47 |
model_data[AutoEvalColumn.params.name] = request["params"]
|
|
|
6 |
from huggingface_hub import HfApi
|
7 |
from tqdm import tqdm
|
8 |
|
9 |
+
from src.get_model_info.hardocded_metadata.flags import DO_NOT_SUBMIT_MODELS, FLAGGED_MODELS
|
10 |
+
from src.get_model_info.hardocded_metadata.types import MODEL_TYPE_METADATA, ModelType, model_type_from_str
|
11 |
+
from src.get_model_info.utils import AutoEvalColumn, model_hyperlink
|
12 |
|
13 |
api = HfApi(token=os.environ.get("H4_TOKEN", None))
|
14 |
|
|
|
41 |
request = json.load(f)
|
42 |
model_type = model_type_from_str(request["model_type"])
|
43 |
model_data[AutoEvalColumn.model_type.name] = model_type.value.name
|
44 |
+
model_data[AutoEvalColumn.model_type_symbol.name] = model_type.value.symbol
|
45 |
model_data[AutoEvalColumn.license.name] = request["license"]
|
46 |
model_data[AutoEvalColumn.likes.name] = request["likes"]
|
47 |
model_data[AutoEvalColumn.params.name] = request["params"]
|
src/get_model_info/get_metadata_from_hub.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from huggingface_hub.hf_api import ModelInfo
|
3 |
+
|
4 |
+
|
5 |
+
def get_model_size(model_info: ModelInfo, precision: str):
|
6 |
+
size_pattern = size_pattern = re.compile(r"(\d\.)?\d+(b|m)")
|
7 |
+
try:
|
8 |
+
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
9 |
+
except AttributeError:
|
10 |
+
try:
|
11 |
+
size_match = re.search(size_pattern, model_info.modelId.lower())
|
12 |
+
model_size = size_match.group(0)
|
13 |
+
model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
|
14 |
+
except AttributeError:
|
15 |
+
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
|
16 |
+
|
17 |
+
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
|
18 |
+
model_size = size_factor * model_size
|
19 |
+
return model_size
|
src/{display_models/model_metadata_flags.py → get_model_info/hardocded_metadata/flags.py}
RENAMED
File without changes
|
src/{display_models/model_metadata_type.py → get_model_info/hardocded_metadata/types.py}
RENAMED
File without changes
|
src/{display_models → get_model_info}/utils.py
RENAMED
File without changes
|
src/load_from_hub.py
CHANGED
@@ -3,12 +3,11 @@ import os
|
|
3 |
from collections import defaultdict
|
4 |
|
5 |
import pandas as pd
|
6 |
-
from transformers import AutoConfig
|
7 |
|
8 |
from src.assets.hardcoded_evals import baseline, gpt4_values, gpt35_values
|
9 |
-
from src.
|
10 |
-
from src.
|
11 |
-
from src.
|
12 |
|
13 |
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
|
14 |
|
@@ -90,17 +89,3 @@ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
|
90 |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
91 |
return df_finished[cols], df_running[cols], df_pending[cols]
|
92 |
|
93 |
-
|
94 |
-
def is_model_on_hub(model_name: str, revision: str) -> bool:
|
95 |
-
try:
|
96 |
-
AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=False)
|
97 |
-
return True, None
|
98 |
-
|
99 |
-
except ValueError:
|
100 |
-
return (
|
101 |
-
False,
|
102 |
-
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
103 |
-
)
|
104 |
-
|
105 |
-
except Exception:
|
106 |
-
return False, "was not found on hub!"
|
|
|
3 |
from collections import defaultdict
|
4 |
|
5 |
import pandas as pd
|
|
|
6 |
|
7 |
from src.assets.hardcoded_evals import baseline, gpt4_values, gpt35_values
|
8 |
+
from src.get_model_info.apply_metadata_to_df import apply_metadata
|
9 |
+
from src.plots.read_results import get_eval_results_dicts, make_clickable_model
|
10 |
+
from src.get_model_info.utils import AutoEvalColumn, EvalQueueColumn, has_no_nan_values
|
11 |
|
12 |
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
|
13 |
|
|
|
89 |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
90 |
return df_finished[cols], df_running[cols], df_pending[cols]
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/manage_collections.py
CHANGED
@@ -5,8 +5,8 @@ from requests.exceptions import HTTPError
|
|
5 |
from huggingface_hub import get_collection, add_collection_item, update_collection_item, delete_collection_item
|
6 |
from huggingface_hub.utils._errors import HfHubHTTPError
|
7 |
|
8 |
-
from src.
|
9 |
-
from src.
|
10 |
|
11 |
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
12 |
|
|
|
5 |
from huggingface_hub import get_collection, add_collection_item, update_collection_item, delete_collection_item
|
6 |
from huggingface_hub.utils._errors import HfHubHTTPError
|
7 |
|
8 |
+
from src.get_model_info.hardocded_metadata.types import ModelType
|
9 |
+
from src.get_model_info.utils import AutoEvalColumn
|
10 |
|
11 |
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
12 |
|
src/{display_models → plots}/plot_results.py
RENAMED
@@ -4,7 +4,7 @@ from plotly.graph_objs import Figure
|
|
4 |
import pickle
|
5 |
from datetime import datetime, timezone
|
6 |
from typing import List, Dict, Tuple, Any
|
7 |
-
from src.
|
8 |
|
9 |
# Average ⬆️ human baseline is 0.897 (source: averaging human baselines below)
|
10 |
# ARC human baseline is 0.80 (source: https://lab42.global/arc/)
|
|
|
4 |
import pickle
|
5 |
from datetime import datetime, timezone
|
6 |
from typing import List, Dict, Tuple, Any
|
7 |
+
from src.get_model_info.hardocded_metadata.flags import FLAGGED_MODELS
|
8 |
|
9 |
# Average ⬆️ human baseline is 0.897 (source: averaging human baselines below)
|
10 |
# ARC human baseline is 0.80 (source: https://lab42.global/arc/)
|
src/{display_models → plots}/read_results.py
RENAMED
@@ -6,7 +6,7 @@ from typing import Dict, List, Tuple
|
|
6 |
import dateutil
|
7 |
import numpy as np
|
8 |
|
9 |
-
from src.
|
10 |
|
11 |
METRICS = ["acc_norm", "acc_norm", "acc", "mc2"]
|
12 |
BENCHMARKS = ["arc:challenge", "hellaswag", "hendrycksTest", "truthfulqa:mc"]
|
@@ -31,7 +31,7 @@ class EvalResult:
|
|
31 |
date: str = ""
|
32 |
|
33 |
def to_dict(self):
|
34 |
-
from src.
|
35 |
|
36 |
if self.org is not None:
|
37 |
base_model = f"{self.org}/{self.model}"
|
|
|
6 |
import dateutil
|
7 |
import numpy as np
|
8 |
|
9 |
+
from src.get_model_info.utils import AutoEvalColumn, make_clickable_model
|
10 |
|
11 |
METRICS = ["acc_norm", "acc_norm", "acc", "mc2"]
|
12 |
BENCHMARKS = ["arc:challenge", "hellaswag", "hendrycksTest", "truthfulqa:mc"]
|
|
|
31 |
date: str = ""
|
32 |
|
33 |
def to_dict(self):
|
34 |
+
from src.filters import is_model_on_hub
|
35 |
|
36 |
if self.org is not None:
|
37 |
base_model = f"{self.org}/{self.model}"
|
src/rate_limiting.py
DELETED
@@ -1,13 +0,0 @@
|
|
1 |
-
from datetime import datetime, timedelta, timezone
|
2 |
-
|
3 |
-
|
4 |
-
def user_submission_permission(submission_name, users_to_submission_dates, rate_limit_period):
|
5 |
-
org_or_user, _ = submission_name.split("/")
|
6 |
-
if org_or_user not in users_to_submission_dates:
|
7 |
-
return 0
|
8 |
-
submission_dates = sorted(users_to_submission_dates[org_or_user])
|
9 |
-
|
10 |
-
time_limit = (datetime.now(timezone.utc) - timedelta(days=rate_limit_period)).strftime("%Y-%m-%dT%H:%M:%SZ")
|
11 |
-
submissions_after_timelimit = [d for d in submission_dates if d > time_limit]
|
12 |
-
|
13 |
-
return len(submissions_after_timelimit)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|