arenahardlb / src /populate.py
apsys's picture
more ref, ci, debug
d78ed99
raw
history blame
3.37 kB
import json
import os
import pandas as pd
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results
from src.envs import RESULTS_REPO
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
"""Creates a dataframe from all the individual experiment results"""
raw_data = get_raw_eval_results(results_path, requests_path)
# all_data_json = [v.to_dict() for v in raw_data]
# print(raw_data)
df = pd.DataFrame.from_records(json.load(open(raw_data[0])))
print(list(df.columns))
df['95% CI'] = " "
# df['model']="nothing"
# df.columns = cols
# df.iloc[0]= create dummy
# print(dir(AutoEvalColumn))
df = df.sort_values(by=[AutoEvalColumn.task0.name], ascending=False)
decimal = 1
for i,row in df.iterrows():
if 'lower' not in row:
continue
interval = '+'+str(round(row['upper'] - row['score'], decimal))+' / '+str(round(row['lower'] - row['score'], decimal))
df.at[i,'95% CI'] = interval
df = df[cols].round(decimals=2)
# filter out if any of the benchmarks have not been produced
# df = df[has_no_nan_values(df, benchmark_cols)]
return df
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
"""Creates the different dataframes for the evaluation queues requestes"""
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".") and not entry.endswith(".jsonl")]
all_evals = []
for entry in entries:
if ".json" in entry and 'toeval' not in entry:
file_path = os.path.join(save_path, entry)
with open(file_path) as fp:
print(file_path)
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
elif ".md" not in entry and 'toeval' not in entry and 'results' not in entry:
# this is a folder
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
for sub_entry in sub_entries:
if 'toeval' in sub_entry:
continue
file_path = os.path.join(save_path, entry, sub_entry)
with open(file_path) as fp:
# print(file_path)
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
df_running = pd.DataFrame.from_records(running_list, columns=cols)
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
return df_finished[cols], df_running[cols], df_pending[cols]