Spaces:
Running
Running
split text into trunk to fit the token length of 256
Browse files
app.py
CHANGED
@@ -1,11 +1,48 @@
|
|
1 |
from flask import Flask, request, jsonify
|
2 |
-
from transformers import
|
|
|
|
|
3 |
|
4 |
app = Flask(__name__)
|
5 |
|
6 |
# Load PhoBERT (TensorFlow version)
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
@app.route('/embed', methods=['POST'])
|
11 |
def embed():
|
@@ -14,17 +51,12 @@ def embed():
|
|
14 |
if not text:
|
15 |
return jsonify({"error": "No text provided"}), 400
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
# Lấy embedding từ hidden state đầu tiên
|
21 |
-
embedding = outputs.last_hidden_state[:, 0, :].numpy().tolist() # Dùng .numpy() để chuyển từ TensorFlow tensor sang list
|
22 |
-
|
23 |
-
return jsonify({"embeddings": embedding})
|
24 |
|
25 |
@app.route('/', methods=['GET'])
|
26 |
def index():
|
27 |
-
return "PhoBERT
|
28 |
|
29 |
if __name__ == "__main__":
|
30 |
app.run(host="0.0.0.0", port=7860)
|
|
|
1 |
from flask import Flask, request, jsonify
|
2 |
+
from transformers import AutoTokenizer, TFAutoModel
|
3 |
+
import tensorflow as tf
|
4 |
+
import numpy as np
|
5 |
|
6 |
app = Flask(__name__)
|
7 |
|
8 |
# Load PhoBERT (TensorFlow version)
|
9 |
+
MODEL_NAME = "vinai/phobert-base"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
11 |
+
model = TFAutoModel.from_pretrained(MODEL_NAME)
|
12 |
+
|
13 |
+
MAX_LEN = 256
|
14 |
+
STRIDE = 128
|
15 |
+
|
16 |
+
def split_text_into_chunks(text):
|
17 |
+
tokens = tokenizer.encode(text, add_special_tokens=True)
|
18 |
+
chunks = []
|
19 |
+
for i in range(0, len(tokens), STRIDE):
|
20 |
+
chunk = tokens[i:i + MAX_LEN]
|
21 |
+
if len(chunk) < MAX_LEN:
|
22 |
+
chunk += [tokenizer.pad_token_id] * (MAX_LEN - len(chunk))
|
23 |
+
chunks.append(chunk)
|
24 |
+
if i + MAX_LEN >= len(tokens):
|
25 |
+
break
|
26 |
+
return chunks
|
27 |
+
|
28 |
+
def embed_text(text):
|
29 |
+
chunks = split_text_into_chunks(text)
|
30 |
+
embeddings = []
|
31 |
+
|
32 |
+
for chunk in chunks:
|
33 |
+
input_ids = tf.constant([chunk])
|
34 |
+
attention_mask = tf.cast(input_ids != tokenizer.pad_token_id, tf.int32)
|
35 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
36 |
+
|
37 |
+
hidden_states = outputs.last_hidden_state
|
38 |
+
mask = tf.cast(tf.expand_dims(attention_mask, -1), tf.float32)
|
39 |
+
summed = tf.reduce_sum(hidden_states * mask, axis=1)
|
40 |
+
count = tf.reduce_sum(mask, axis=1)
|
41 |
+
mean_pooled = summed / count
|
42 |
+
embeddings.append(mean_pooled.numpy()[0])
|
43 |
+
|
44 |
+
final_embedding = np.mean(embeddings, axis=0)
|
45 |
+
return final_embedding.tolist()
|
46 |
|
47 |
@app.route('/embed', methods=['POST'])
|
48 |
def embed():
|
|
|
51 |
if not text:
|
52 |
return jsonify({"error": "No text provided"}), 400
|
53 |
|
54 |
+
embedding = embed_text(text)
|
55 |
+
return jsonify({"embedding": embedding})
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
@app.route('/', methods=['GET'])
|
58 |
def index():
|
59 |
+
return "PhoBERT vector API is running!"
|
60 |
|
61 |
if __name__ == "__main__":
|
62 |
app.run(host="0.0.0.0", port=7860)
|