update remote
Browse files- app/law_document_chunker.py +1 -1
- app/reranker.py +107 -34
app/law_document_chunker.py
CHANGED
@@ -186,7 +186,7 @@ class LawDocumentChunker:
|
|
186 |
if parent.article_number and not metadata.article_number:
|
187 |
metadata.article_number = parent.article_number
|
188 |
if parent.article_title and not metadata.article_title:
|
189 |
-
metadata.article_title = parent.article_title
|
190 |
if parent.clause_number and not metadata.clause_number:
|
191 |
metadata.clause_number = parent.clause_number
|
192 |
if parent.sub_clause_letter and not metadata.sub_clause_letter:
|
|
|
186 |
if parent.article_number and not metadata.article_number:
|
187 |
metadata.article_number = parent.article_number
|
188 |
if parent.article_title and not metadata.article_title:
|
189 |
+
metadata.article_title = parent.article_title #
|
190 |
if parent.clause_number and not metadata.clause_number:
|
191 |
metadata.clause_number = parent.clause_number
|
192 |
if parent.sub_clause_letter and not metadata.sub_clause_letter:
|
app/reranker.py
CHANGED
@@ -4,6 +4,7 @@ from .gemini_client import GeminiClient
|
|
4 |
from loguru import logger
|
5 |
import asyncio
|
6 |
import random
|
|
|
7 |
from .constants import BATCH_STATUS_MESSAGES
|
8 |
|
9 |
class Reranker:
|
@@ -20,17 +21,26 @@ class Reranker:
|
|
20 |
else:
|
21 |
raise NotImplementedError(f"Rerank provider {self.provider} not supported yet.")
|
22 |
self.facebook_client = facebook_client
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
async def _score_doc(self, query: str, doc: Dict) -> Dict:
|
25 |
"""
|
26 |
Score một document với query.
|
27 |
"""
|
28 |
content = (doc.get('tieude', '') or '') + ' ' + (doc.get('noidung', '') or '')
|
|
|
29 |
prompt = (
|
30 |
-
f"
|
31 |
-
f"
|
32 |
-
"
|
33 |
-
"Chỉ trả về một số duy nhất."
|
34 |
)
|
35 |
|
36 |
try:
|
@@ -51,53 +61,116 @@ class Reranker:
|
|
51 |
doc['rerank_score'] = 0
|
52 |
return doc
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
async def rerank(self, query: str, docs: List[Dict], top_k: int = 5) -> List[Dict]:
|
55 |
"""
|
56 |
Rerank docs theo độ liên quan với query, trả về top_k docs.
|
57 |
-
Sử dụng
|
58 |
"""
|
59 |
logger.info(f"[RERANK] Start rerank for query: {query} | docs: {len(docs)} | top_k: {top_k}")
|
60 |
|
61 |
if not docs:
|
62 |
return []
|
63 |
|
64 |
-
#
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
67 |
|
68 |
-
#
|
69 |
-
|
70 |
-
|
|
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
# Xử lý kết quả
|
83 |
-
for result in batch_results:
|
84 |
-
if isinstance(result, Exception):
|
85 |
-
logger.error(f"[RERANK] Batch processing error: {result}")
|
86 |
-
continue
|
87 |
-
scored.append(result)
|
88 |
-
|
89 |
-
logger.info(f"[RERANK] Completed batch {i//batch_size + 1}, processed {len(scored)} docs so far")
|
90 |
-
# Send Facebook message after each batch
|
91 |
-
if self.facebook_client:
|
92 |
try:
|
93 |
-
|
94 |
-
|
95 |
except Exception as e:
|
96 |
-
logger.error(f"[RERANK]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
# Sort theo score và trả về top_k
|
99 |
scored = sorted(scored, key=lambda x: x['rerank_score'], reverse=True)
|
100 |
result = scored[:top_k]
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
logger.info(f"[RERANK] Top reranked docs: {result}")
|
103 |
return result
|
|
|
4 |
from loguru import logger
|
5 |
import asyncio
|
6 |
import random
|
7 |
+
import hashlib
|
8 |
from .constants import BATCH_STATUS_MESSAGES
|
9 |
|
10 |
class Reranker:
|
|
|
21 |
else:
|
22 |
raise NotImplementedError(f"Rerank provider {self.provider} not supported yet.")
|
23 |
self.facebook_client = facebook_client
|
24 |
+
# Cache cho kết quả reranking
|
25 |
+
self._rerank_cache = {}
|
26 |
+
|
27 |
+
def _get_cache_key(self, query: str, docs: List[Dict]) -> str:
|
28 |
+
"""Tạo cache key từ query và docs."""
|
29 |
+
# Tạo hash từ query và doc IDs
|
30 |
+
doc_ids = [str(doc.get('id', '')) for doc in docs[:15]] # Chỉ cache top 15 docs
|
31 |
+
cache_content = query + "|".join(doc_ids)
|
32 |
+
return hashlib.md5(cache_content.encode()).hexdigest()
|
33 |
|
34 |
async def _score_doc(self, query: str, doc: Dict) -> Dict:
|
35 |
"""
|
36 |
Score một document với query.
|
37 |
"""
|
38 |
content = (doc.get('tieude', '') or '') + ' ' + (doc.get('noidung', '') or '')
|
39 |
+
# Tối ưu prompt ngắn gọn hơn
|
40 |
prompt = (
|
41 |
+
f"Luật: {content[:500]}\n" # Giới hạn content length
|
42 |
+
f"Hỏi: {query}\n"
|
43 |
+
"Đánh giá mức độ liên quan (0-10). Chỉ trả về số."
|
|
|
44 |
)
|
45 |
|
46 |
try:
|
|
|
61 |
doc['rerank_score'] = 0
|
62 |
return doc
|
63 |
|
64 |
+
async def _batch_score_docs(self, query: str, docs: List[Dict]) -> List[Dict]:
|
65 |
+
"""
|
66 |
+
Score nhiều documents cùng lúc bằng một prompt duy nhất.
|
67 |
+
"""
|
68 |
+
if not docs:
|
69 |
+
return []
|
70 |
+
|
71 |
+
# Tạo prompt batch cho tất cả documents
|
72 |
+
docs_content = []
|
73 |
+
for i, doc in enumerate(docs):
|
74 |
+
content = (doc.get('tieude', '') or '') + ' ' + (doc.get('noidung', '') or '')
|
75 |
+
docs_content.append(f"{i+1}. {content[:300]}") # Giới hạn length
|
76 |
+
|
77 |
+
batch_prompt = (
|
78 |
+
f"Câu hỏi: {query}\n\n"
|
79 |
+
f"Các đoạn luật:\n" + "\n".join(docs_content) + "\n\n"
|
80 |
+
f"Đánh giá mức độ liên quan của từng đoạn (0-10). Trả về dạng: 1.8,2.5,3.0,..."
|
81 |
+
)
|
82 |
+
|
83 |
+
try:
|
84 |
+
if self.provider == 'gemini':
|
85 |
+
loop = asyncio.get_event_loop()
|
86 |
+
logger.info(f"[RERANK] Sending batch prompt to Gemini")
|
87 |
+
response = await loop.run_in_executor(None, self.client.generate_text, batch_prompt)
|
88 |
+
logger.info(f"[RERANK] Got batch scores from Gemini: {response}")
|
89 |
+
|
90 |
+
# Parse scores từ response
|
91 |
+
scores_text = str(response).strip()
|
92 |
+
scores = []
|
93 |
+
for score_str in scores_text.split(','):
|
94 |
+
try:
|
95 |
+
score = float(score_str.strip().split('.')[0])
|
96 |
+
scores.append(score)
|
97 |
+
except:
|
98 |
+
scores.append(0)
|
99 |
+
|
100 |
+
# Gán scores cho documents
|
101 |
+
for i, doc in enumerate(docs):
|
102 |
+
doc['rerank_score'] = scores[i] if i < len(scores) else 0
|
103 |
+
|
104 |
+
return docs
|
105 |
+
|
106 |
+
else:
|
107 |
+
raise NotImplementedError(f"Rerank provider {self.provider} not supported yet in batch method.")
|
108 |
+
|
109 |
+
except Exception as e:
|
110 |
+
logger.error(f"[RERANK] Lỗi khi batch score: {e}")
|
111 |
+
# Fallback về individual scoring
|
112 |
+
for doc in docs:
|
113 |
+
doc['rerank_score'] = 0
|
114 |
+
return docs
|
115 |
+
|
116 |
async def rerank(self, query: str, docs: List[Dict], top_k: int = 5) -> List[Dict]:
|
117 |
"""
|
118 |
Rerank docs theo độ liên quan với query, trả về top_k docs.
|
119 |
+
Sử dụng batch processing để tối ưu hiệu suất.
|
120 |
"""
|
121 |
logger.info(f"[RERANK] Start rerank for query: {query} | docs: {len(docs)} | top_k: {top_k}")
|
122 |
|
123 |
if not docs:
|
124 |
return []
|
125 |
|
126 |
+
# Kiểm tra cache trước
|
127 |
+
cache_key = self._get_cache_key(query, docs)
|
128 |
+
if cache_key in self._rerank_cache:
|
129 |
+
logger.info(f"[RERANK] Cache hit for query, returning cached result")
|
130 |
+
cached_result = self._rerank_cache[cache_key][:top_k]
|
131 |
+
return cached_result
|
132 |
|
133 |
+
# Giới hạn số lượng docs để rerank - chỉ rerank top 15 docs có similarity cao nhất
|
134 |
+
max_docs_to_rerank = 15
|
135 |
+
docs_to_rerank = docs[:max_docs_to_rerank]
|
136 |
+
logger.info(f"[RERANK] Will rerank {len(docs_to_rerank)} docs (limited to top {max_docs_to_rerank})")
|
137 |
|
138 |
+
# Sử dụng batch processing thay vì individual scoring
|
139 |
+
try:
|
140 |
+
scored = await self._batch_score_docs(query, docs_to_rerank)
|
141 |
+
logger.info(f"[RERANK] Batch processing completed, scored {len(scored)} docs")
|
142 |
+
except Exception as e:
|
143 |
+
logger.error(f"[RERANK] Batch processing failed, falling back to individual scoring: {e}")
|
144 |
+
# Fallback về individual scoring nếu batch processing thất bại
|
145 |
+
scored = []
|
146 |
+
for doc in docs_to_rerank:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
try:
|
148 |
+
scored_doc = await self._score_doc(query, doc)
|
149 |
+
scored.append(scored_doc)
|
150 |
except Exception as e:
|
151 |
+
logger.error(f"[RERANK] Error scoring individual doc: {e}")
|
152 |
+
doc['rerank_score'] = 0
|
153 |
+
scored.append(doc)
|
154 |
+
|
155 |
+
# Gửi Facebook message chỉ một lần sau khi hoàn thành
|
156 |
+
if self.facebook_client:
|
157 |
+
try:
|
158 |
+
message = random.choice(BATCH_STATUS_MESSAGES)
|
159 |
+
await self.facebook_client.send_message(message=f"... {message} ...")
|
160 |
+
except Exception as e:
|
161 |
+
logger.error(f"[RERANK][FACEBOOK] Error sending batch message: {e}")
|
162 |
|
163 |
# Sort theo score và trả về top_k
|
164 |
scored = sorted(scored, key=lambda x: x['rerank_score'], reverse=True)
|
165 |
result = scored[:top_k]
|
166 |
|
167 |
+
# Cache kết quả
|
168 |
+
self._rerank_cache[cache_key] = scored
|
169 |
+
# Giới hạn cache size để tránh memory leak
|
170 |
+
if len(self._rerank_cache) > 100:
|
171 |
+
# Xóa cache cũ nhất
|
172 |
+
oldest_key = next(iter(self._rerank_cache))
|
173 |
+
del self._rerank_cache[oldest_key]
|
174 |
+
|
175 |
logger.info(f"[RERANK] Top reranked docs: {result}")
|
176 |
return result
|