# Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional, Union, Tuple, List
import torch
import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
from models.blocks import JointTransformerBlock
# from diffusers.models.attention_processor import Attention, AttentionProcessor
from models.attention import Attention, AttentionProcessor
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormContinuous
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from diffusers.models.embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed
from diffusers.models.transformers.transformer_2d import Transformer2DModelOutput
from einops import rearrange
from torch.distributed._tensor import Shard, Replicate
from torch.distributed.tensor.parallel import (
parallelize_module,
PrepareModuleOutput
)
#from models.layers import ParallelTimestepEmbedder, TransformerBlock, ParallelFinalLayer, Identity
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class VchitectXLTransformerModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
"""
The Transformer model introduced in Stable Diffusion 3.
Reference: https://arxiv.org/abs/2403.03206
Parameters:
sample_size (`int`): The width of the latent images. This is fixed during training since
it is used to learn a number of position embeddings.
patch_size (`int`): Patch size to turn the input data into small patches.
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
num_layers (`int`, *optional*, defaults to 18): The number of layers of Transformer blocks to use.
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
caption_projection_dim (`int`): Number of dimensions to use when projecting the `encoder_hidden_states`.
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
out_channels (`int`, defaults to 16): Number of output channels.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
sample_size: int = 128,
patch_size: int = 2,
in_channels: int = 16,
num_layers: int = 18,
attention_head_dim: int = 64,
num_attention_heads: int = 18,
joint_attention_dim: int = 4096,
caption_projection_dim: int = 1152,
pooled_projection_dim: int = 2048,
out_channels: int = 16,
pos_embed_max_size: int = 96,
tp_size: int = 1,
rope_scaling_factor: float = 1.,
):
super().__init__()
default_out_channels = in_channels
self.out_channels = out_channels if out_channels is not None else default_out_channels
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
self.pos_embed = PatchEmbed(
height=self.config.sample_size,
width=self.config.sample_size,
patch_size=self.config.patch_size,
in_channels=self.config.in_channels,
embed_dim=self.inner_dim,
pos_embed_max_size=pos_embed_max_size, # hard-code for now.
)
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim
)
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.config.caption_projection_dim)
# `attention_head_dim` is doubled to account for the mixing.
# It needs to crafted when we get the actual checkpoints.
self.transformer_blocks = nn.ModuleList(
[
JointTransformerBlock(
dim=self.inner_dim,
num_attention_heads=self.config.num_attention_heads,
attention_head_dim=self.inner_dim,
context_pre_only=i == num_layers - 1,
tp_size = tp_size
)
for i in range(self.config.num_layers)
]
)
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
self.gradient_checkpointing = False
# Video param
# self.scatter_dim_zero = Identity()
self.freqs_cis = VchitectXLTransformerModel.precompute_freqs_cis(
self.inner_dim // self.config.num_attention_heads, 1000000, theta=1e6, rope_scaling_factor=rope_scaling_factor # todo max pos embeds
)
#self.vid_token = nn.Parameter(torch.empty(self.inner_dim))
@staticmethod
def tp_parallelize(model, tp_mesh):
for layer_id, transformer_block in enumerate(model.transformer_blocks):
layer_tp_plan = {
# Attention layer
"attn.gather_seq_scatter_hidden": PrepareModuleOutput(
output_layouts=Replicate(),
desired_output_layouts=Shard(-2)
),
"attn.gather_hidden_scatter_seq": PrepareModuleOutput(
output_layouts=Shard(-2),
desired_output_layouts=Replicate(),
)
}
parallelize_module(
module=transformer_block,
device_mesh=tp_mesh,
parallelize_plan=layer_tp_plan
)
return model
@staticmethod
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, rope_scaling_factor: float = 1.0):
freqs = 1.0 / (theta ** (
torch.arange(0, dim, 2)[: (dim // 2)].float() / dim
))
t = torch.arange(end, device=freqs.device, dtype=torch.float)
t = t / rope_scaling_factor
freqs = torch.outer(t, freqs).float()
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
return freqs_cis
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
"""
Sets the attention processor to use [feed forward
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
Parameters:
chunk_size (`int`, *optional*):
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
over each tensor of dim=`dim`.
dim (`int`, *optional*, defaults to `0`):
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
or dim=1 (sequence length).
"""
if dim not in [0, 1]:
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
# By default chunk size is 1
chunk_size = chunk_size or 1
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
if hasattr(module, "set_chunk_feed_forward"):
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
for child in module.children():
fn_recursive_feed_forward(child, chunk_size, dim)
for module in self.children():
fn_recursive_feed_forward(module, chunk_size, dim)
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
def fuse_qkv_projections(self):
"""
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
are fused. For cross-attention modules, key and value projection matrices are fused.
This API is 🧪 experimental.
"""
self.original_attn_processors = None
for _, attn_processor in self.attn_processors.items():
if "Added" in str(attn_processor.__class__.__name__):
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
self.original_attn_processors = self.attn_processors
for module in self.modules():
if isinstance(module, Attention):
module.fuse_projections(fuse=True)
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
def unfuse_qkv_projections(self):
"""Disables the fused QKV projection if enabled.
This API is 🧪 experimental.
"""
if self.original_attn_processors is not None:
self.set_attn_processor(self.original_attn_processors)
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
def patchify_and_embed(self, x):
pH = pW = self.patch_size
B, F, C, H, W = x.size()
x = rearrange(x, "b f c h w -> (b f) c h w")
x = self.pos_embed(x) # [B L D]
# x = torch.cat([
# x,
# self.vid_token.view(1, 1, -1).expand(B*F, 1, -1),
# ], dim=1)
return x, F, [(H, W)] * B
def forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
pooled_projections: torch.FloatTensor = None,
timestep: torch.LongTensor = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
"""
The [`VchitectXLTransformerModel`] forward method.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
Input `hidden_states`.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
from the embeddings of input conditions.
timestep ( `torch.LongTensor`):
Used to indicate denoising step.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
# if USE_PEFT_BACKEND:
# # weight the lora layers by setting `lora_scale` for each PEFT layer
# scale_lora_layers(self, lora_scale)
# else:
# logger.warning(
# "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
# )
height, width = hidden_states.shape[-2:]
batch_size = hidden_states.shape[0]
hidden_states, F_num, _ = self.patchify_and_embed(hidden_states) # takes care of adding positional embeddings too.
full_seq = batch_size * F_num
self.freqs_cis = self.freqs_cis.to(hidden_states.device)
freqs_cis = self.freqs_cis
# seq_length = hidden_states.size(1)
# freqs_cis = self.freqs_cis[:hidden_states.size(1)*F_num]
temb = self.time_text_embed(timestep, pooled_projections)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
# for block in self.transformer_blocks:
# if self.training and self.gradient_checkpointing:
# def create_custom_forward(module, return_dict=None):
# def custom_forward(*inputs):
# if return_dict is not None:
# return module(*inputs, return_dict=return_dict)
# else:
# return module(*inputs)
# return custom_forward
# ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
# hidden_states = torch.utils.checkpoint.checkpoint(
# create_custom_forward(block),
# hidden_states,
# encoder_hidden_states,
# temb,
# **ckpt_kwargs,
# )
# else:
# encoder_hidden_states, hidden_states = block(
# hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb
# )
for block_idx, block in enumerate(self.transformer_blocks):
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb.repeat(F_num,1), freqs_cis=freqs_cis, full_seqlen=full_seq, Frame=F_num
)
hidden_states = self.norm_out(hidden_states, temb)
hidden_states = self.proj_out(hidden_states)
# unpatchify
# hidden_states = hidden_states[:, :-1] #Drop the video token
# unpatchify
patch_size = self.config.patch_size
height = height // patch_size
width = width // patch_size
hidden_states = hidden_states.reshape(
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels)
)
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
output = hidden_states.reshape(
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)
def get_fsdp_wrap_module_list(self) -> List[nn.Module]:
return list(self.transformer_blocks)
@classmethod
def from_pretrained_temporal(cls, pretrained_model_path, torch_dtype, logger, subfolder=None, tp_size=1):
import os
import json
if subfolder is not None:
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
config_file = os.path.join(pretrained_model_path, 'config.json')
with open(config_file, "r") as f:
config = json.load(f)
config["tp_size"] = tp_size
from diffusers.utils import WEIGHTS_NAME
from safetensors.torch import load_file,load_model
model = cls.from_config(config)
# model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
model_files = [
os.path.join(pretrained_model_path, 'diffusion_pytorch_model.bin'),
os.path.join(pretrained_model_path, 'diffusion_pytorch_model.safetensors')
]
model_file = None
for fp in model_files:
if os.path.exists(fp):
model_file = fp
if not model_file:
raise RuntimeError(f"{model_file} does not exist")
if not os.path.isfile(model_file):
raise RuntimeError(f"{model_file} does not exist")
state_dict = load_file(model_file,device="cpu")
m, u = model.load_state_dict(state_dict, strict=False)
model = model.to(torch_dtype)
params = [p.numel() if "temporal" in n else 0 for n, p in model.named_parameters()]
total_params = [p.numel() for n, p in model.named_parameters()]
if logger is not None:
logger.info(f"model_file: {model_file}")
logger.info(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
logger.info(f"### Temporal Module Parameters: {sum(params) / 1e6} M")
logger.info(f"### Total Parameters: {sum(total_params) / 1e6} M")
return model