# Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional, Union, Tuple, List import torch import torch.nn as nn from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin from models.blocks import JointTransformerBlock # from diffusers.models.attention_processor import Attention, AttentionProcessor from models.attention import Attention, AttentionProcessor from diffusers.models.modeling_utils import ModelMixin from diffusers.models.normalization import AdaLayerNormContinuous from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers from diffusers.models.embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed from diffusers.models.transformers.transformer_2d import Transformer2DModelOutput from einops import rearrange from torch.distributed._tensor import Shard, Replicate from torch.distributed.tensor.parallel import ( parallelize_module, PrepareModuleOutput ) #from models.layers import ParallelTimestepEmbedder, TransformerBlock, ParallelFinalLayer, Identity logger = logging.get_logger(__name__) # pylint: disable=invalid-name class VchitectXLTransformerModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): """ The Transformer model introduced in Stable Diffusion 3. Reference: https://arxiv.org/abs/2403.03206 Parameters: sample_size (`int`): The width of the latent images. This is fixed during training since it is used to learn a number of position embeddings. patch_size (`int`): Patch size to turn the input data into small patches. in_channels (`int`, *optional*, defaults to 16): The number of channels in the input. num_layers (`int`, *optional*, defaults to 18): The number of layers of Transformer blocks to use. attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention. cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. caption_projection_dim (`int`): Number of dimensions to use when projecting the `encoder_hidden_states`. pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`. out_channels (`int`, defaults to 16): Number of output channels. """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, sample_size: int = 128, patch_size: int = 2, in_channels: int = 16, num_layers: int = 18, attention_head_dim: int = 64, num_attention_heads: int = 18, joint_attention_dim: int = 4096, caption_projection_dim: int = 1152, pooled_projection_dim: int = 2048, out_channels: int = 16, pos_embed_max_size: int = 96, tp_size: int = 1, rope_scaling_factor: float = 1., ): super().__init__() default_out_channels = in_channels self.out_channels = out_channels if out_channels is not None else default_out_channels self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim self.pos_embed = PatchEmbed( height=self.config.sample_size, width=self.config.sample_size, patch_size=self.config.patch_size, in_channels=self.config.in_channels, embed_dim=self.inner_dim, pos_embed_max_size=pos_embed_max_size, # hard-code for now. ) self.time_text_embed = CombinedTimestepTextProjEmbeddings( embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim ) self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.config.caption_projection_dim) # `attention_head_dim` is doubled to account for the mixing. # It needs to crafted when we get the actual checkpoints. self.transformer_blocks = nn.ModuleList( [ JointTransformerBlock( dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, attention_head_dim=self.inner_dim, context_pre_only=i == num_layers - 1, tp_size = tp_size ) for i in range(self.config.num_layers) ] ) self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) self.gradient_checkpointing = False # Video param # self.scatter_dim_zero = Identity() self.freqs_cis = VchitectXLTransformerModel.precompute_freqs_cis( self.inner_dim // self.config.num_attention_heads, 1000000, theta=1e6, rope_scaling_factor=rope_scaling_factor # todo max pos embeds ) #self.vid_token = nn.Parameter(torch.empty(self.inner_dim)) @staticmethod def tp_parallelize(model, tp_mesh): for layer_id, transformer_block in enumerate(model.transformer_blocks): layer_tp_plan = { # Attention layer "attn.gather_seq_scatter_hidden": PrepareModuleOutput( output_layouts=Replicate(), desired_output_layouts=Shard(-2) ), "attn.gather_hidden_scatter_seq": PrepareModuleOutput( output_layouts=Shard(-2), desired_output_layouts=Replicate(), ) } parallelize_module( module=transformer_block, device_mesh=tp_mesh, parallelize_plan=layer_tp_plan ) return model @staticmethod def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, rope_scaling_factor: float = 1.0): freqs = 1.0 / (theta ** ( torch.arange(0, dim, 2)[: (dim // 2)].float() / dim )) t = torch.arange(end, device=freqs.device, dtype=torch.float) t = t / rope_scaling_factor freqs = torch.outer(t, freqs).float() freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 return freqs_cis # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: """ Sets the attention processor to use [feed forward chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). Parameters: chunk_size (`int`, *optional*): The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually over each tensor of dim=`dim`. dim (`int`, *optional*, defaults to `0`): The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) or dim=1 (sequence length). """ if dim not in [0, 1]: raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") # By default chunk size is 1 chunk_size = chunk_size or 1 def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): if hasattr(module, "set_chunk_feed_forward"): module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) for child in module.children(): fn_recursive_feed_forward(child, chunk_size, dim) for module in self.children(): fn_recursive_feed_forward(module, chunk_size, dim) @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections def fuse_qkv_projections(self): """ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. This API is 🧪 experimental. """ self.original_attn_processors = None for _, attn_processor in self.attn_processors.items(): if "Added" in str(attn_processor.__class__.__name__): raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") self.original_attn_processors = self.attn_processors for module in self.modules(): if isinstance(module, Attention): module.fuse_projections(fuse=True) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections def unfuse_qkv_projections(self): """Disables the fused QKV projection if enabled. This API is 🧪 experimental. """ if self.original_attn_processors is not None: self.set_attn_processor(self.original_attn_processors) def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def patchify_and_embed(self, x): pH = pW = self.patch_size B, F, C, H, W = x.size() x = rearrange(x, "b f c h w -> (b f) c h w") x = self.pos_embed(x) # [B L D] # x = torch.cat([ # x, # self.vid_token.view(1, 1, -1).expand(B*F, 1, -1), # ], dim=1) return x, F, [(H, W)] * B def forward( self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, pooled_projections: torch.FloatTensor = None, timestep: torch.LongTensor = None, joint_attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, ) -> Union[torch.FloatTensor, Transformer2DModelOutput]: """ The [`VchitectXLTransformerModel`] forward method. Args: hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input `hidden_states`. encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected from the embeddings of input conditions. timestep ( `torch.LongTensor`): Used to indicate denoising step. joint_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ if joint_attention_kwargs is not None: joint_attention_kwargs = joint_attention_kwargs.copy() lora_scale = joint_attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 # if USE_PEFT_BACKEND: # # weight the lora layers by setting `lora_scale` for each PEFT layer # scale_lora_layers(self, lora_scale) # else: # logger.warning( # "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." # ) height, width = hidden_states.shape[-2:] batch_size = hidden_states.shape[0] hidden_states, F_num, _ = self.patchify_and_embed(hidden_states) # takes care of adding positional embeddings too. full_seq = batch_size * F_num self.freqs_cis = self.freqs_cis.to(hidden_states.device) freqs_cis = self.freqs_cis # seq_length = hidden_states.size(1) # freqs_cis = self.freqs_cis[:hidden_states.size(1)*F_num] temb = self.time_text_embed(timestep, pooled_projections) encoder_hidden_states = self.context_embedder(encoder_hidden_states) # for block in self.transformer_blocks: # if self.training and self.gradient_checkpointing: # def create_custom_forward(module, return_dict=None): # def custom_forward(*inputs): # if return_dict is not None: # return module(*inputs, return_dict=return_dict) # else: # return module(*inputs) # return custom_forward # ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} # hidden_states = torch.utils.checkpoint.checkpoint( # create_custom_forward(block), # hidden_states, # encoder_hidden_states, # temb, # **ckpt_kwargs, # ) # else: # encoder_hidden_states, hidden_states = block( # hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb # ) for block_idx, block in enumerate(self.transformer_blocks): encoder_hidden_states, hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb.repeat(F_num,1), freqs_cis=freqs_cis, full_seqlen=full_seq, Frame=F_num ) hidden_states = self.norm_out(hidden_states, temb) hidden_states = self.proj_out(hidden_states) # unpatchify # hidden_states = hidden_states[:, :-1] #Drop the video token # unpatchify patch_size = self.config.patch_size height = height // patch_size width = width // patch_size hidden_states = hidden_states.reshape( shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels) ) hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) output = hidden_states.reshape( shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size) ) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output) def get_fsdp_wrap_module_list(self) -> List[nn.Module]: return list(self.transformer_blocks) @classmethod def from_pretrained_temporal(cls, pretrained_model_path, torch_dtype, logger, subfolder=None, tp_size=1): import os import json if subfolder is not None: pretrained_model_path = os.path.join(pretrained_model_path, subfolder) config_file = os.path.join(pretrained_model_path, 'config.json') with open(config_file, "r") as f: config = json.load(f) config["tp_size"] = tp_size from diffusers.utils import WEIGHTS_NAME from safetensors.torch import load_file,load_model model = cls.from_config(config) # model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) model_files = [ os.path.join(pretrained_model_path, 'diffusion_pytorch_model.bin'), os.path.join(pretrained_model_path, 'diffusion_pytorch_model.safetensors') ] model_file = None for fp in model_files: if os.path.exists(fp): model_file = fp if not model_file: raise RuntimeError(f"{model_file} does not exist") if not os.path.isfile(model_file): raise RuntimeError(f"{model_file} does not exist") state_dict = load_file(model_file,device="cpu") m, u = model.load_state_dict(state_dict, strict=False) model = model.to(torch_dtype) params = [p.numel() if "temporal" in n else 0 for n, p in model.named_parameters()] total_params = [p.numel() for n, p in model.named_parameters()] if logger is not None: logger.info(f"model_file: {model_file}") logger.info(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") logger.info(f"### Temporal Module Parameters: {sum(params) / 1e6} M") logger.info(f"### Total Parameters: {sum(total_params) / 1e6} M") return model