Vchitect-2.0 / app.py
ChenyangSi's picture
Update app.py
aca37d6 verified
import os
import threading
import time
import gradio as gr
import torch
# from diffusers import CogVideoXPipeline
import torch
from models.pipeline import VchitectXLPipeline
import random
import numpy as np
import os
import inspect
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import (
CLIPTextModelWithProjection,
CLIPTokenizer,
T5TokenizerFast,
)
from models.modeling_t5 import T5EncoderModel
from models.VchitectXL import VchitectXLTransformerModel
from transformers import AutoTokenizer, PretrainedConfig, CLIPTextModel, CLIPTextModelWithProjection
from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import FromSingleFileMixin, SD3LoraLoaderMixin
from diffusers.models.autoencoders import AutoencoderKL
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import (
is_torch_xla_available,
logging,
replace_example_docstring,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
# from patch_conv import convert_model
from op_replace import replace_all_layernorms
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
import math
from diffusers.utils import export_to_video
from datetime import datetime, timedelta
# from openai import OpenAI
import spaces
import moviepy.editor as mp
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
import torch.fft
@torch.no_grad()
def myfft(tensor):
if True:
if True:
tensor_fft = torch.fft.fft2(tensor)
# 将频谱中心移到图像中心
tensor_fft_shifted = torch.fft.fftshift(tensor_fft)
# 获取张量的尺寸
B, C, H, W = tensor.size()
# 定义频率分离的半径
radius = min(H, W) // 5 # 可以调整此值
# 创建一个中心为(H/2, W/2)的圆形掩码
Y, X = torch.meshgrid(torch.arange(H), torch.arange(W))
center_x, center_y = W // 2, H // 2
mask = (X - center_x) ** 2 + (Y - center_y) ** 2 <= radius ** 2
# 创建高频和低频掩码
low_freq_mask = mask.unsqueeze(0).unsqueeze(0).to(tensor.device)
high_freq_mask = ~low_freq_mask
# 获取低频分量
low_freq_fft = tensor_fft_shifted * low_freq_mask
# low_freq_fft_shifted = torch.fft.ifftshift(low_freq_fft)
# low_freq = torch.fft.ifft2(low_freq_fft_shifted).real
# 获取高频分量
high_freq_fft = tensor_fft_shifted * high_freq_mask
# high_freq_fft_shifted = torch.fft.ifftshift(high_freq_fft)
# high_freq = torch.fft.ifft2(high_freq_fft_shifted).real
return low_freq_fft, high_freq_fft
@torch.no_grad()
def acc_call(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
prompt_3: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
frames: Optional[int] = None,
num_inference_steps: int = 28,
timesteps: List[int] = None,
guidance_scale: float = 7.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
negative_prompt_3: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
):
if True:
# print('acc call.......')
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
frames = frames or 24
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
prompt_3,
height,
width,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
negative_prompt_3=negative_prompt_3,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._clip_skip = clip_skip
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self.execution_device
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_3=prompt_3,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
negative_prompt_3=negative_prompt_3,
do_classifier_free_guidance=self.do_classifier_free_guidance,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
device=device,
clip_skip=self.clip_skip,
num_images_per_prompt=num_images_per_prompt,
)
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
# 4. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
# 5. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
frames,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Denoising loop
# with self.progress_bar(total=num_inference_steps) as progress_bar:
from tqdm import tqdm
for i, t in tqdm(enumerate(timesteps)):
if self.interrupt:
continue
# print(i, t,'******',timesteps)
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0])
noise_pred_text = self.transformer(
hidden_states=latent_model_input[1,:].unsqueeze(0),
timestep=timestep,
encoder_hidden_states=prompt_embeds[1,:].unsqueeze(0),
pooled_projections=pooled_prompt_embeds[1,:].unsqueeze(0),
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
# idx=i,
)[0]
if i<30 or (i>30 and i%5==0):
noise_pred_uncond = self.transformer(
hidden_states=latent_model_input[0,:].unsqueeze(0),
timestep=timestep,
encoder_hidden_states=prompt_embeds[0,:].unsqueeze(0),
pooled_projections=pooled_prompt_embeds[0,:].unsqueeze(0),
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
# idx=i,
)[0]
# print(noise_pred_uncond.shape,noise_pred_text.shape)
# exit(0)
# torch.Size([80, 16, 54, 96]) torch.Size([80, 16, 54, 96])
if i>=28:
lf_uc,hf_uc = myfft(noise_pred_uncond.float())
lf_c, hf_c = myfft(noise_pred_text.float())
delta_lf = lf_uc -lf_c
delta_hf = hf_uc - hf_c
else:
lf_c, hf_c = myfft(noise_pred_text.float())
delta_lf = delta_lf * 1.1
delta_hf = delta_hf * 1.25
new_lf_uc = delta_lf + lf_c
new_hf_uc = delta_hf + hf_c
combine_uc = new_lf_uc + new_hf_uc
combined_fft = torch.fft.ifftshift(combine_uc)
noise_pred_uncond = torch.fft.ifft2(combined_fft).real
self._guidance_scale = 1 + guidance_scale * (
(1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2
)
# perform guidance
if self.do_classifier_free_guidance:
# noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
negative_pooled_prompt_embeds = callback_outputs.pop(
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
)
# call the callback, if provided
# if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
# progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
# if output_type == "latent":
# image = latents
# else:
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
videos = []
for v_idx in range(latents.shape[1]):
image = self.vae.decode(latents[:,v_idx], return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
videos.append(image[0])
return videos
import os
from huggingface_hub import login
login(token=os.getenv('HF_TOKEN'))
dtype = torch.float16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = VchitectXLPipeline("Vchitect/Vchitect-XL-2B",device)
# pipe.acc_call = acc_call.__get__(pipe)
import types
# pipe.__call__ = types.MethodType(acc_call, pipe)
pipe.__class__.__call__ = acc_call
os.makedirs("./output", exist_ok=True)
os.makedirs("./gradio_tmp", exist_ok=True)
@spaces.GPU(duration=120)
def infer(prompt: str, progress=gr.Progress(track_tqdm=True)):
torch.cuda.empty_cache()
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
video = pipe(
prompt,
negative_prompt="",
num_inference_steps=50,
guidance_scale=7.5,
width=768,
height=432, #480x288 624x352 432x240 768x432
frames=16
)
return video
def save_video(tensor):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
video_path = f"./output/{timestamp}.mp4"
os.makedirs(os.path.dirname(video_path), exist_ok=True)
export_to_video(tensor, video_path)
return video_path
def convert_to_gif(video_path):
clip = mp.VideoFileClip(video_path)
clip = clip.set_fps(8)
clip = clip.resize(height=240)
gif_path = video_path.replace(".mp4", ".gif")
clip.write_gif(gif_path, fps=8)
return gif_path
def delete_old_files():
while True:
now = datetime.now()
cutoff = now - timedelta(minutes=10)
directories = ["./output", "./gradio_tmp"]
for directory in directories:
for filename in os.listdir(directory):
file_path = os.path.join(directory, filename)
if os.path.isfile(file_path):
file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path))
if file_mtime < cutoff:
os.remove(file_path)
time.sleep(600)
threading.Thread(target=delete_old_files, daemon=True).start()
with gr.Blocks() as demo:
gr.Markdown("""
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
Vchitect-2.0 Huggingface Space🤗
</div>
<div style="text-align: center;">
<a href="https://huggingface.co/Vchitect-XL/Vchitect-XL-2B">🤗 2B Model Hub</a> |
<a href="https://vchitect.intern-ai.org.cn/">🌐 Website</a> |
</div>
<div style="text-align: center; font-size: 15px; font-weight: bold; color: red; margin-bottom: 20px;">
⚠️ This demo is for academic research and experiential use only.
Users should strictly adhere to local laws and ethics.
</div>
<div style="text-align: center; font-size: 15px; font-weight: bold; color: red; margin-bottom: 20px;">
Note: Due to GPU memory limitations, the demo only supports 2s video generation. For the full version, you'll need to run it locally.
</div>
""")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here", lines=5)
# with gr.Row():
# gr.Markdown(
# "✨Upon pressing the enhanced prompt button, we will use [GLM-4 Model](https://github.com/THUDM/GLM-4) to polish the prompt and overwrite the original one.")
# enhance_button = gr.Button("✨ Enhance Prompt(Optional)")
with gr.Column():
# gr.Markdown("**Optional Parameters** (default values are recommended)<br>"
# "Increasing the number of inference steps will produce more detailed videos, but it will slow down the process.<br>"
# "50 steps are recommended for most cases.<br>"
# "For the 5B model, 50 steps will take approximately 350 seconds.")
# with gr.Row():
# num_inference_steps = gr.Number(label="Inference Steps", value=50)
# guidance_scale = gr.Number(label="Guidance Scale", value=7.5)
generate_button = gr.Button("🎬 Generate Video")
with gr.Column():
video_output = gr.Video(label="Generate Video", width=768, height=432)
with gr.Row():
download_video_button = gr.File(label="📥 Download Video", visible=False)
download_gif_button = gr.File(label="📥 Download GIF", visible=False)
def generate(prompt, model_choice, progress=gr.Progress(track_tqdm=True)):
tensor = infer(prompt, progress=progress)
video_path = save_video(tensor)
video_update = gr.update(visible=True, value=video_path)
gif_path = convert_to_gif(video_path)
gif_update = gr.update(visible=True, value=gif_path)
return video_path, video_update, gif_update
# def enhance_prompt_func(prompt):
# return convert_prompt(prompt, retry_times=1)
generate_button.click(
generate,
inputs=[prompt],
outputs=[video_output, download_video_button, download_gif_button]
)
# enhance_button.click(
# enhance_prompt_func,
# inputs=[prompt],
# outputs=[prompt]
# )
if __name__ == "__main__":
demo.launch()