Spaces:
Runtime error
Runtime error
| from dataclasses import dataclass | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| import numpy as np | |
| import torch.nn.functional as F | |
| from torch import nn | |
| import torchvision | |
| # from torch_utils.ops import grid_sample_gradfix | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.utils import BaseOutput | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from diffusers.models.attention import FeedForward | |
| # from diffusers.models.attention_processor import Attention | |
| try: | |
| from .diffusers_attention import CrossAttention | |
| from .resnet import Downsample3D, Upsample3D, InflatedConv3d, ResnetBlock3D, ResnetBlock3DCNN | |
| except: | |
| from diffusers_attention import CrossAttention | |
| from resnet import Downsample3D, Upsample3D, InflatedConv3d, ResnetBlock3D, ResnetBlock3DCNN | |
| from einops import rearrange, repeat | |
| import math | |
| import pdb | |
| def zero_module(module): | |
| """ | |
| Zero out the parameters of a module and return it. | |
| """ | |
| for p in module.parameters(): | |
| p.detach().zero_() | |
| return module | |
| def grid_sample_align(input, grid): | |
| return torch.nn.functional.grid_sample(input=input, grid=grid, mode='bilinear', padding_mode='zeros', align_corners=True) | |
| class TemporalTransformer3DModelOutput(BaseOutput): | |
| sample: torch.FloatTensor | |
| if is_xformers_available(): | |
| import xformers | |
| import xformers.ops | |
| else: | |
| xformers = None | |
| class EmptyTemporalModule3D(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| def forward(self, hidden_states, condition_video=None, encoder_hidden_states=None, timesteps=None, temb=None, attention_mask=None): | |
| return hidden_states | |
| class TemporalModule3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels=None, | |
| out_channels=None, | |
| num_attention_layers=None, | |
| num_attention_head=8, | |
| attention_head_dim=None, | |
| cross_attention_dim=768, | |
| temb_channels=512, | |
| dropout=0., | |
| attention_bias=False, | |
| activation_fn="geglu", | |
| only_cross_attention=False, | |
| upcast_attention=False, | |
| norm_num_groups=8, | |
| use_linear_projection=True, | |
| use_scale_shift=False, # set True always produce nan loss, I don't know why | |
| attention_block_types: Tuple[str]=None, | |
| cross_frame_attention_mode=None, | |
| temporal_shift_fold_div=None, | |
| temporal_shift_direction=None, | |
| use_dcn_warpping=None, | |
| use_deformable_conv=None, | |
| attention_dim_div: int = None, | |
| video_condition=False, | |
| ): | |
| super().__init__() | |
| assert len(attention_block_types) == 2 | |
| self.use_scale_shift = use_scale_shift | |
| self.video_condition = video_condition | |
| self.non_linearity = nn.SiLU() | |
| # 1. 3d cnn | |
| if self.video_condition: | |
| video_condition_dim = int(out_channels//4) | |
| self.v_cond_conv = ResnetBlock3D(in_channels=3, out_channels=video_condition_dim, temb_channels=temb_channels, groups=3, groups_out=32) | |
| self.resblocks_3d_t = ResnetBlock3DCNN(in_channels=in_channels+video_condition_dim, out_channels=in_channels, kernel=(5,1,1), temb_channels=temb_channels) | |
| else: | |
| self.resblocks_3d_t = ResnetBlock3DCNN(in_channels=in_channels, out_channels=in_channels, kernel=(5,1,1), temb_channels=temb_channels) | |
| self.resblocks_3d_s = ResnetBlock3D(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, groups=32, groups_out=32) | |
| # 2. transformer blocks | |
| if not (attention_block_types[0]=='' and attention_block_types[1]==''): | |
| attentions = TemporalTransformer3DModel( | |
| num_attention_heads=num_attention_head, | |
| attention_head_dim=attention_head_dim if attention_head_dim is not None else in_channels // num_attention_head // attention_dim_div, | |
| in_channels=in_channels, | |
| num_layers=num_attention_layers, | |
| dropout=dropout, | |
| norm_num_groups=norm_num_groups, | |
| cross_attention_dim=cross_attention_dim, | |
| attention_bias=attention_bias, | |
| activation_fn=activation_fn, | |
| num_embeds_ada_norm=1000, # adaptive norm for timestep embedding injection | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention, | |
| upcast_attention=upcast_attention, | |
| attention_block_types=attention_block_types, | |
| cross_frame_attention_mode=cross_frame_attention_mode, | |
| temporal_shift_fold_div=temporal_shift_fold_div, | |
| temporal_shift_direction=temporal_shift_direction, | |
| use_dcn_warpping=use_dcn_warpping, | |
| use_deformable_conv=use_deformable_conv, | |
| ) | |
| self.attentions = nn.ModuleList([attentions]) | |
| if use_scale_shift: | |
| self.scale_shift_conv = zero_module(InflatedConv3d(in_channels=in_channels, out_channels=in_channels * 2, kernel_size=1, stride=1, padding=0)) | |
| else: | |
| self.shift_conv = zero_module(InflatedConv3d(in_channels=in_channels, out_channels=in_channels, kernel_size=1, stride=1, padding=0)) | |
| def forward(self, hidden_states, condition_video=None, encoder_hidden_states=None, timesteps=None, temb=None, attention_mask=None): | |
| input_tensor = hidden_states | |
| if self.video_condition: | |
| # obtain video attention | |
| assert condition_video is not None | |
| if isinstance(condition_video, dict): | |
| condition_video = condition_video[hidden_states.shape[-1]] | |
| hidden_condition = self.v_cond_conv(condition_video, temb) | |
| hidden_states = torch.cat([hidden_states, hidden_condition], dim=1) | |
| # 3DCNN | |
| hidden_states = self.resblocks_3d_t(hidden_states, temb) | |
| hidden_states = self.resblocks_3d_s(hidden_states, temb) | |
| if hasattr(self, "attentions"): | |
| for attn in self.attentions: | |
| hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timesteps).sample | |
| if self.use_scale_shift: | |
| hidden_states = self.scale_shift_conv(hidden_states) | |
| scale, shift = torch.chunk(hidden_states, chunks=2, dim=1) | |
| hidden_states = (1 + scale) * input_tensor + shift | |
| else: | |
| hidden_states = self.shift_conv(hidden_states) | |
| hidden_states = input_tensor + hidden_states | |
| return hidden_states | |
| class TemporalTransformer3DModel(ModelMixin, ConfigMixin): | |
| def __init__( | |
| self, | |
| num_attention_heads=None, | |
| attention_head_dim=None, | |
| in_channels=None, | |
| num_layers=None, | |
| dropout=None, | |
| norm_num_groups=None, | |
| cross_attention_dim=None, | |
| attention_bias=None, | |
| activation_fn=None, | |
| num_embeds_ada_norm=None, | |
| use_linear_projection=None, | |
| only_cross_attention=None, | |
| upcast_attention=None, | |
| attention_block_types=None, | |
| cross_frame_attention_mode=None, | |
| temporal_shift_fold_div=None, | |
| temporal_shift_direction=None, | |
| use_dcn_warpping=None, | |
| use_deformable_conv=None, | |
| ): | |
| super().__init__() | |
| self.use_linear_projection = use_linear_projection | |
| self.num_attention_heads = num_attention_heads | |
| self.attention_head_dim = attention_head_dim | |
| inner_dim = num_attention_heads * attention_head_dim | |
| # Define input layers | |
| self.in_channels = in_channels | |
| self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
| if use_linear_projection: | |
| self.proj_in = nn.Linear(in_channels, inner_dim) | |
| else: | |
| self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) | |
| # Define transformers blocks | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| TemporalTransformerBlock( | |
| inner_dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| dropout=dropout, | |
| cross_attention_dim=cross_attention_dim, | |
| activation_fn=activation_fn, | |
| num_embeds_ada_norm=num_embeds_ada_norm, | |
| attention_bias=attention_bias, | |
| only_cross_attention=only_cross_attention, | |
| upcast_attention=upcast_attention, | |
| attention_block_types=attention_block_types, | |
| cross_frame_attention_mode=cross_frame_attention_mode, | |
| temporal_shift_fold_div=temporal_shift_fold_div, | |
| temporal_shift_direction=temporal_shift_direction, | |
| use_dcn_warpping=use_dcn_warpping, | |
| use_deformable_conv=use_deformable_conv, | |
| ) | |
| for d in range(num_layers) | |
| ] | |
| ) | |
| # 4. Define output layers | |
| if use_linear_projection: | |
| self.proj_out = nn.Linear(inner_dim, in_channels) | |
| else: | |
| self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
| def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True): | |
| # Input | |
| assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." | |
| video_length = hidden_states.shape[2] | |
| hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") | |
| if encoder_hidden_states is not None: | |
| encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length) | |
| batch, channel, height, weight = hidden_states.shape | |
| residual = hidden_states | |
| hidden_states = self.norm(hidden_states) | |
| if not self.use_linear_projection: | |
| hidden_states = self.proj_in(hidden_states) | |
| inner_dim = hidden_states.shape[1] | |
| hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) | |
| else: | |
| inner_dim = hidden_states.shape[1] | |
| hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) | |
| hidden_states = self.proj_in(hidden_states) | |
| # Blocks | |
| for block in self.transformer_blocks: | |
| hidden_states = block( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| timestep=timestep, | |
| video_length=video_length | |
| ) | |
| # Output | |
| if not self.use_linear_projection: | |
| hidden_states = ( | |
| hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() | |
| ) | |
| hidden_states = self.proj_out(hidden_states) | |
| else: | |
| hidden_states = self.proj_out(hidden_states) | |
| hidden_states = ( | |
| hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() | |
| ) | |
| output = hidden_states + residual | |
| output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) | |
| if not return_dict: | |
| return (output,) | |
| return TemporalTransformer3DModelOutput(sample=output) | |
| class TemporalTransformerBlock(nn.Module): | |
| def __init__( | |
| self, | |
| dim=None, | |
| num_attention_heads=None, | |
| attention_head_dim=None, | |
| dropout=None, | |
| cross_attention_dim=None, | |
| activation_fn=None, | |
| num_embeds_ada_norm=None, | |
| attention_bias=None, | |
| only_cross_attention=None, | |
| upcast_attention=None, | |
| attention_block_types=None, | |
| cross_frame_attention_mode=None, | |
| temporal_shift_fold_div=None, | |
| temporal_shift_direction=None, | |
| use_dcn_warpping=None, | |
| use_deformable_conv=None, | |
| ): | |
| super().__init__() | |
| assert len(attention_block_types) == 2 | |
| self.only_cross_attention = only_cross_attention | |
| self.use_ada_layer_norm = num_embeds_ada_norm is not None | |
| self.use_dcn_warpping = use_dcn_warpping | |
| # 1. Spatial-Attn (self) | |
| if not attention_block_types[0] == '': | |
| self.attn_spatial = VersatileSelfAttention( | |
| attention_mode=attention_block_types[0], | |
| query_dim=dim, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| upcast_attention=upcast_attention, | |
| cross_frame_attention_mode=cross_frame_attention_mode, | |
| temporal_shift_fold_div=temporal_shift_fold_div, | |
| temporal_shift_direction=temporal_shift_direction, | |
| ) | |
| nn.init.zeros_(self.attn_spatial.to_out[0].weight.data) | |
| self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
| # 2. Temporal-Attn (self) | |
| self.attn_temporal = VersatileSelfAttention( | |
| attention_mode=attention_block_types[1], | |
| query_dim=dim, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| upcast_attention=upcast_attention, | |
| cross_frame_attention_mode=cross_frame_attention_mode, | |
| temporal_shift_fold_div=temporal_shift_fold_div, | |
| temporal_shift_direction=temporal_shift_direction, | |
| ) | |
| nn.init.zeros_(self.attn_temporal.to_out[0].weight.data) | |
| self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
| self.dcn_module = WarpModule( | |
| in_channels=dim, | |
| use_deformable_conv=use_deformable_conv, | |
| ) if use_dcn_warpping else None | |
| # 3. Feed-forward | |
| self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) | |
| self.norm3 = nn.LayerNorm(dim) | |
| def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool, attention_op: None): | |
| if not is_xformers_available(): | |
| print("Here is how to install it") | |
| raise ModuleNotFoundError( | |
| "Refer to https://github.com/facebookresearch/xformers for more information on how to install" | |
| " xformers", | |
| name="xformers", | |
| ) | |
| elif not torch.cuda.is_available(): | |
| raise ValueError( | |
| "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only" | |
| " available for GPU " | |
| ) | |
| else: | |
| try: | |
| # Make sure we can run the memory efficient attention | |
| _ = xformers.ops.memory_efficient_attention( | |
| torch.randn((1, 2, 40), device="cuda"), | |
| torch.randn((1, 2, 40), device="cuda"), | |
| torch.randn((1, 2, 40), device="cuda"), | |
| ) | |
| except Exception as e: | |
| raise e | |
| if hasattr(self, "attn_spatial"): | |
| self.attn_spatial._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers | |
| def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None): | |
| # 1. Spatial-Attention | |
| if hasattr(self, "attn_spatial") and hasattr(self, "norm1"): | |
| norm_hidden_states = self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states) | |
| hidden_states = self.attn_spatial(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states | |
| # 2. Temporal-Attention | |
| norm_hidden_states = self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) | |
| if not self.use_dcn_warpping: | |
| hidden_states = self.attn_temporal(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states | |
| else: | |
| hidden_states = self.dcn_module( | |
| hidden_states, | |
| offset_hidden_states=self.attn_temporal(norm_hidden_states, attention_mask=attention_mask, video_length=video_length), | |
| ) | |
| # 3. Feed-forward | |
| hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states | |
| return hidden_states | |
| class VersatileSelfAttention(CrossAttention): | |
| def __init__( | |
| self, | |
| attention_mode=None, | |
| cross_frame_attention_mode=None, | |
| temporal_shift_fold_div=None, | |
| temporal_shift_direction=None, | |
| temporal_position_encoding=False, | |
| temporal_position_encoding_max_len=24, | |
| *args, **kwargs | |
| ): | |
| super().__init__(*args, **kwargs) | |
| assert attention_mode in ("Temporal", "Spatial", "CrossFrame", "SpatialTemporalShift", None) | |
| assert cross_frame_attention_mode in ("0_i-1", "i-1_i", "0_i-1_i", "i-1_i_i+1", None) | |
| self.attention_mode = attention_mode | |
| self.cross_frame_attention_mode = cross_frame_attention_mode | |
| self.temporal_shift_fold_div = temporal_shift_fold_div | |
| self.temporal_shift_direction = temporal_shift_direction | |
| self.pos_encoder = PositionalEncoding( | |
| kwargs["query_dim"], | |
| dropout=0., | |
| max_len=temporal_position_encoding_max_len | |
| ) if temporal_position_encoding else None | |
| def temporal_token_concat(self, tensor, video_length): | |
| # print("### temporal token concat") | |
| current_frame_index = torch.arange(video_length) | |
| former_frame_index = current_frame_index - 1 | |
| former_frame_index[0] = 0 | |
| later_frame_index = current_frame_index + 1 | |
| later_frame_index[-1] = -1 | |
| # (b f) d c | |
| tensor = rearrange(tensor, "(b f) d c -> b f d c", f=video_length) | |
| if self.cross_frame_attention_mode == "0_i-1": | |
| tensor = torch.cat([tensor[:, [0] * video_length], tensor[:, former_frame_index]], dim=2) | |
| elif self.cross_frame_attention_mode == "i-1_i": | |
| tensor = torch.cat([tensor[:, former_frame_index], tensor[:, current_frame_index]], dim=2) | |
| elif self.cross_frame_attention_mode == "0_i-1_i": | |
| tensor = torch.cat([tensor[:, [0] * video_length], tensor[:, former_frame_index], tensor[:, current_frame_index]], dim=2) | |
| elif self.cross_frame_attention_mode == "i-1_i_i+1": | |
| tensor = torch.cat([tensor[:, former_frame_index], tensor[:, current_frame_index], tensor[:, later_frame_index]], dim=2) | |
| else: | |
| raise NotImplementedError | |
| tensor = rearrange(tensor, "b f d c -> (b f) d c") | |
| return tensor | |
| def temporal_shift(self, tensor, video_length): | |
| # print("### temporal shift") | |
| # (b f) d c | |
| tensor = rearrange(tensor, "(b f) d c -> b f d c", f=video_length) | |
| n_channels = tensor.shape[-1] | |
| fold = n_channels // self.temporal_shift_fold_div | |
| if self.temporal_shift_direction != "right": | |
| raise NotImplementedError | |
| tensor_out = torch.zeros_like(tensor) | |
| tensor_out[:, 1:, :, :fold] = tensor[:, :-1, :, :fold] | |
| tensor_out[:, :, :, fold:] = tensor[:, :, :, fold:] | |
| tensor_out = rearrange(tensor_out, "b f d c -> (b f) d c") | |
| return tensor_out | |
| def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None): | |
| # pdb.set_trace() | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| assert encoder_hidden_states is None | |
| # (b f) d c | |
| if self.attention_mode == "Temporal": | |
| # print("### temporal reshape") | |
| d = hidden_states.shape[1] | |
| hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length) | |
| if self.pos_encoder is not None: | |
| hidden_states = self.pos_encoder(hidden_states) | |
| encoder_hidden_states = encoder_hidden_states | |
| if self.group_norm is not None: | |
| hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = self.to_q(hidden_states) | |
| dim = query.shape[-1] | |
| query = self.reshape_heads_to_batch_dim(query) | |
| if self.added_kv_proj_dim is not None: | |
| raise NotImplementedError | |
| encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
| key = self.to_k(encoder_hidden_states) | |
| value = self.to_v(encoder_hidden_states) | |
| if self.attention_mode == "SpatialTemporalShift": | |
| key = self.temporal_shift(key, video_length=video_length) | |
| value = self.temporal_shift(value, video_length=video_length) | |
| elif self.attention_mode == "CrossFrame": | |
| key = self.temporal_token_concat(key, video_length=video_length) | |
| value = self.temporal_token_concat(value, video_length=video_length) | |
| key = self.reshape_heads_to_batch_dim(key) | |
| value = self.reshape_heads_to_batch_dim(value) | |
| if attention_mask is not None: | |
| if attention_mask.shape[-1] != query.shape[1]: | |
| target_length = query.shape[1] | |
| attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
| attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) | |
| # attention, what we cannot get enough of | |
| if self._use_memory_efficient_attention_xformers: | |
| hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) | |
| # Some versions of xformers return output in fp32, cast it back to the dtype of the input | |
| hidden_states = hidden_states.to(query.dtype) | |
| else: | |
| if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
| hidden_states = self._attention(query, key, value, attention_mask) | |
| else: | |
| hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) | |
| # linear proj | |
| hidden_states = self.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = self.to_out[1](hidden_states) | |
| if self.attention_mode == "Temporal": | |
| hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) | |
| return hidden_states | |
| class WarpModule(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels=None, | |
| use_deformable_conv=None, | |
| ): | |
| super().__init__() | |
| self.use_deformable_conv = use_deformable_conv | |
| self.conv = None | |
| self.dcn_weight = None | |
| if use_deformable_conv: | |
| self.conv = nn.Conv2d(in_channels*2, 27, kernel_size=3, stride=1, padding=1) | |
| self.dcn_weight = nn.Parameter(torch.randn(in_channels, in_channels, 3, 3) / np.sqrt(in_channels * 3 * 3)) | |
| self.alpha = nn.Parameter(torch.zeros(1, in_channels, 1, 1)) | |
| else: | |
| self.conv = zero_module(nn.Conv2d(in_channels, 2, kernel_size=3, stride=1, padding=1)) | |
| def forward(self, hidden_states, offset_hidden_states): | |
| # (b f) d c | |
| spatial_dim = hidden_states.shape[1] | |
| size = int(spatial_dim ** 0.5) | |
| assert size ** 2 == spatial_dim | |
| hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=size) | |
| offset_hidden_states = rearrange(offset_hidden_states, "b (h w) c -> b c h w", h=size) | |
| concat_hidden_states = torch.cat([hidden_states, offset_hidden_states], dim=1) | |
| input_tensor = hidden_states | |
| if self.use_deformable_conv: | |
| offset_x, offset_y, offsets_mask = torch.chunk(self.conv(concat_hidden_states), chunks=3, dim=1) | |
| offsets_mask = offsets_mask.sigmoid() * 2 | |
| offsets = torch.cat([offset_x, offset_y], dim=1) | |
| hidden_states = torchvision.ops.deform_conv2d( | |
| hidden_states, | |
| offset=offsets, | |
| weight=self.dcn_weight, | |
| mask=offsets_mask, | |
| padding=1, | |
| ) | |
| hidden_states = self.alpha * hidden_states + input_tensor | |
| else: | |
| offsets = self.conv(concat_hidden_states) | |
| hidden_states = self.optical_flow_warping(hidden_states, offsets) | |
| hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c") | |
| return hidden_states | |
| def optical_flow_warping(x, flo): | |
| """ | |
| warp an image/tensor (im2) back to im1, according to the optical flow | |
| x: [B, C, H, W] (im2) | |
| flo: [B, 2, H, W] flow | |
| pad_mode (optional): ref to https://pytorch.org/docs/stable/nn.functional.html#grid-sample | |
| "zeros": use 0 for out-of-bound grid locations, | |
| "border": use border values for out-of-bound grid locations | |
| """ | |
| dtype = x.dtype | |
| if dtype != torch.float32: | |
| x = x.to(torch.float32) | |
| B, C, H, W = x.size() | |
| # mesh grid | |
| xx = torch.arange(0, W).view(1, -1).repeat(H, 1) | |
| yy = torch.arange(0, H).view(-1, 1).repeat(1, W) | |
| xx = xx.view(1, 1, H, W).repeat(B, 1, 1, 1) | |
| yy = yy.view(1, 1, H, W).repeat(B, 1, 1, 1) | |
| grid = torch.cat((xx, yy), 1).float().to(flo.device) | |
| vgrid = grid + flo | |
| # scale grid to [-1,1] | |
| vgrid[:, 0, :, :] = 2.0 * vgrid[:, 0, :, :].clone() / max(W - 1, 1) - 1.0 | |
| vgrid[:, 1, :, :] = 2.0 * vgrid[:, 1, :, :].clone() / max(H - 1, 1) - 1.0 | |
| vgrid = vgrid.permute(0, 2, 3, 1) | |
| # output = grid_sample_gradfix.grid_sample_align(x, vgrid) | |
| output = grid_sample_align(x, vgrid) | |
| #output = torch.nn.functional.grid_sample(x, vgrid, padding_mode='zeros', mode='bilinear', align_corners=True) | |
| mask = torch.ones_like(x) | |
| # mask = grid_sample_gradfix.grid_sample_align(mask, vgrid) | |
| mask = grid_sample_align(x, vgrid) | |
| #mask = torch.nn.functional.grid_sample(mask, vgrid, padding_mode='zeros', mode='bilinear', align_corners=True) | |
| mask[mask < 0.9999] = 0 | |
| mask[mask > 0] = 1 | |
| results = output * mask | |
| if dtype != torch.float32: | |
| results = results.to(dtype) | |
| return results | |
| class AdaLayerNorm(nn.Module): | |
| """ | |
| Norm layer modified to incorporate timestep embeddings. | |
| """ | |
| def __init__(self, embedding_dim, num_embeddings): | |
| super().__init__() | |
| self.emb = nn.Embedding(num_embeddings, embedding_dim) | |
| self.silu = nn.SiLU() | |
| self.linear = nn.Linear(embedding_dim, embedding_dim * 2) | |
| self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False) | |
| def forward(self, x, timestep): | |
| timestep = repeat(timestep, "b -> (b r)", r=x.shape[0] // timestep.shape[0]) | |
| emb = self.linear(self.silu(self.emb(timestep))).unsqueeze(1) # (b f) 1 2d | |
| scale, shift = torch.chunk(emb, 2, dim=-1) | |
| x = self.norm(x) * (1 + scale) + shift | |
| return x | |