Spaces:
Runtime error
Runtime error
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| from typing import Any, Callable, List, Optional, Union | |
| import numpy as np | |
| import math | |
| import PIL | |
| import torch | |
| import torch.nn.functional as F | |
| from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer | |
| from diffusers.loaders import TextualInversionLoaderMixin | |
| from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
| from diffusers.schedulers import DDPMScheduler | |
| # from diffusers.schedulers import DDIMScheduler | |
| from diffusion.scheduling_ddim import DDIMScheduler | |
| from diffusers.utils import deprecate, is_accelerate_available, is_accelerate_version, logging | |
| try: | |
| from diffusers.utils import randn_tensor | |
| except: | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
| from einops import rearrange | |
| # from datasets.data_utils import filter2D | |
| # from datasets.degradations import random_mixed_kernels, bivariate_Gaussian | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| def preprocess(image): | |
| if isinstance(image, torch.Tensor): | |
| return image | |
| elif isinstance(image, PIL.Image.Image): | |
| image = [image] | |
| if isinstance(image[0], PIL.Image.Image): | |
| w, h = image[0].size | |
| w, h = (x - x % 64 for x in (w, h)) # resize to integer multiple of 64 | |
| image = [np.array(i.resize((w, h)))[None, :] for i in image] | |
| image = np.concatenate(image, axis=0) | |
| image = np.array(image).astype(np.float32) / 255.0 | |
| image = image.transpose(0, 3, 1, 2) | |
| image = 2.0 * image - 1.0 | |
| image = torch.from_numpy(image) | |
| elif isinstance(image[0], torch.Tensor): | |
| image = torch.cat(image, dim=0) | |
| return image | |
| class StableDiffusionUpscalePipeline(DiffusionPipeline, TextualInversionLoaderMixin): | |
| _optional_components = ["feature_extractor"] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| low_res_scheduler: DDPMScheduler, | |
| # scheduler: KarrasDiffusionSchedulers, | |
| scheduler: DDIMScheduler, | |
| feature_extractor: Optional[CLIPImageProcessor] = None, | |
| max_noise_level: int = 350, | |
| ): | |
| super().__init__() | |
| if hasattr( | |
| vae, "config" | |
| ): # check if vae has a config attribute `scaling_factor` and if it is set to 0.08333, else set it to 0.08333 and deprecate | |
| is_vae_scaling_factor_set_to_0_08333 = ( | |
| hasattr(vae.config, "scaling_factor") and vae.config.scaling_factor == 0.08333 | |
| ) | |
| if not is_vae_scaling_factor_set_to_0_08333: | |
| deprecation_message = ( | |
| "The configuration file of the vae does not contain `scaling_factor` or it is set to" | |
| f" {vae.config.scaling_factor}, which seems highly unlikely. If your checkpoint is a fine-tuned" | |
| " version of `stabilityai/stable-diffusion-x4-upscaler` you should change 'scaling_factor' to" | |
| " 0.08333 Please make sure to update the config accordingly, as not doing so might lead to" | |
| " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging" | |
| " Face Hub, it would be very nice if you could open a Pull Request for the `vae/config.json` file" | |
| ) | |
| deprecate("wrong scaling_factor", "1.0.0", deprecation_message, standard_warn=False) | |
| vae.register_to_config(scaling_factor=0.08333) | |
| # TODO: remove | |
| print(f'=============vae.config.scaling_factor: {vae.config.scaling_factor}==================') | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| low_res_scheduler=low_res_scheduler, | |
| scheduler=scheduler, | |
| feature_extractor=feature_extractor, | |
| ) | |
| self.register_to_config(max_noise_level=max_noise_level) | |
| def enable_sequential_cpu_offload(self, gpu_id=0): | |
| r""" | |
| Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, | |
| text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a | |
| `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. | |
| """ | |
| if is_accelerate_available(): | |
| from accelerate import cpu_offload | |
| else: | |
| raise ImportError("Please install accelerate via `pip install accelerate`") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
| if cpu_offloaded_model is not None: | |
| cpu_offload(cpu_offloaded_model, device) | |
| def enable_model_cpu_offload(self, gpu_id=0): | |
| r""" | |
| Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | |
| to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | |
| method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | |
| `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | |
| """ | |
| if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | |
| from accelerate import cpu_offload_with_hook | |
| else: | |
| raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| if self.device.type != "cpu": | |
| self.to("cpu", silence_dtype_warnings=True) | |
| torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
| hook = None | |
| for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
| if cpu_offloaded_model is not None: | |
| _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) | |
| # We'll offload the last model manually. | |
| self.final_offload_hook = hook | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device | |
| def _execution_device(self): | |
| r""" | |
| Returns the device on which the pipeline's models will be executed. After calling | |
| `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | |
| hooks. | |
| """ | |
| if not hasattr(self.unet, "_hf_hook"): | |
| return self.device | |
| for module in self.unet.modules(): | |
| if ( | |
| hasattr(module, "_hf_hook") | |
| and hasattr(module._hf_hook, "execution_device") | |
| and module._hf_hook.execution_device is not None | |
| ): | |
| return torch.device(module._hf_hook.execution_device) | |
| return self.device | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt | |
| def _encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt=None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| """ | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| # textual inversion: procecss multi-vector tokens if necessary | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = self.tokenizer.batch_decode( | |
| untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
| ) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| prompt_embeds = self.text_encoder( | |
| text_input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| prompt_embeds = prompt_embeds[0] | |
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| # textual inversion: procecss multi-vector tokens if necessary | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| negative_prompt_embeds = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds[0] | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| return prompt_embeds | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents | |
| def decode_latents(self, latents): | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| image = self.vae.decode(latents).sample | |
| image = (image / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
| image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
| return image | |
| def decode_latents_vsr(self, latents): | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| image = self.vae.decode(latents).sample | |
| image = image.clamp(-1, 1).cpu() | |
| return image | |
| def check_inputs( | |
| self, | |
| prompt, | |
| image, | |
| noise_level, | |
| callback_steps, | |
| negative_prompt=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| ): | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| if ( | |
| not isinstance(image, torch.Tensor) | |
| and not isinstance(image, PIL.Image.Image) | |
| and not isinstance(image, list) | |
| ): | |
| raise ValueError( | |
| f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or `list` but is {type(image)}" | |
| ) | |
| # verify batch size of prompt and image are same if image is a list or tensor | |
| if isinstance(image, list) or isinstance(image, torch.Tensor): | |
| if isinstance(prompt, str): | |
| batch_size = 1 | |
| else: | |
| batch_size = len(prompt) | |
| if isinstance(image, list): | |
| image_batch_size = len(image) | |
| else: | |
| image_batch_size = image.shape[0] | |
| if batch_size != image_batch_size: | |
| raise ValueError( | |
| f"`prompt` has batch size {batch_size} and `image` has batch size {image_batch_size}." | |
| " Please make sure that passed `prompt` matches the batch size of `image`." | |
| ) | |
| # check noise level | |
| if noise_level > self.config.max_noise_level: | |
| raise ValueError(f"`noise_level` has to be <= {self.config.max_noise_level} but is {noise_level}") | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| def prepare_latents_3d(self, batch_size, num_channels_latents, seq_len, height, width, dtype, device, generator, latents=None): | |
| shape = (batch_size, num_channels_latents, seq_len, height, width) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| if latents.shape != shape: | |
| raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def get_timesteps(self, num_inference_steps, strength, device): | |
| # get the original timestep using init_timestep | |
| init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
| t_start = max(num_inference_steps - init_timestep, 0) | |
| timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] | |
| return timesteps, num_inference_steps - t_start | |
| def prepare_latents_inversion(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): | |
| image = image.to(device=device, dtype=dtype) | |
| batch_size = batch_size * num_images_per_prompt | |
| b = image.shape[0] | |
| image = rearrange(image, 'b c t h w -> (b t) c h w').contiguous() | |
| image = F.interpolate(image, scale_factor=4, mode='bicubic') | |
| image = image.to(dtype=torch.float32) | |
| init_latents = self.vae.encode(image).latent_dist.sample(generator) | |
| torch.cuda.empty_cache() | |
| init_latents = rearrange(init_latents, '(b t) c h w -> b c t h w', b=b).contiguous() | |
| init_latents = self.vae.config.scaling_factor * init_latents | |
| init_latents = init_latents.to(dtype=torch.float16) | |
| # add noise | |
| shape = init_latents.shape | |
| noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| # get latents | |
| init_latents = self.scheduler.add_noise(init_latents, noise, timestep) | |
| # DEBUG | |
| # init_latents = noise | |
| print('timestep', timestep) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = init_latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| image: Union[torch.FloatTensor, PIL.Image.Image, List[PIL.Image.Image]] = None, | |
| num_inference_steps: int = 75, | |
| guidance_scale: float = 9.0, | |
| noise_level: int = 20, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| image (`PIL.Image.Image` or List[`PIL.Image.Image`] or `torch.FloatTensor`): | |
| `Image`, or tensor representing an image batch which will be upscaled. * | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds`. instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` | |
| is less than `1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be | |
| called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| Examples: | |
| ```py | |
| >>> import requests | |
| >>> from PIL import Image | |
| >>> from io import BytesIO | |
| >>> from diffusers import StableDiffusionUpscalePipeline | |
| >>> import torch | |
| >>> # load model and scheduler | |
| >>> model_id = "stabilityai/stable-diffusion-x4-upscaler" | |
| >>> pipeline = StableDiffusionUpscalePipeline.from_pretrained( | |
| ... model_id, revision="fp16", torch_dtype=torch.float16 | |
| ... ) | |
| >>> pipeline = pipeline.to("cuda") | |
| >>> # let's download an image | |
| >>> url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale/low_res_cat.png" | |
| >>> response = requests.get(url) | |
| >>> low_res_img = Image.open(BytesIO(response.content)).convert("RGB") | |
| >>> low_res_img = low_res_img.resize((128, 128)) | |
| >>> prompt = "a white cat" | |
| >>> upscaled_image = pipeline(prompt=prompt, image=low_res_img).images[0] | |
| >>> upscaled_image.save("upsampled_cat.png") | |
| ``` | |
| """ | |
| # 1. Check inputs | |
| self.check_inputs( | |
| prompt, | |
| image, | |
| noise_level, | |
| callback_steps, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| ) | |
| if image is None: | |
| raise ValueError("`image` input cannot be undefined.") | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| prompt_embeds = self._encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| ) | |
| # 4. Preprocess image | |
| # image = preprocess(image) | |
| image = image.to(dtype=prompt_embeds.dtype, device=device) | |
| # 5. Add noise to image | |
| noise_level = torch.tensor([noise_level], dtype=torch.long, device=device) | |
| noise = randn_tensor(image.shape, generator=generator, device=device, dtype=prompt_embeds.dtype) | |
| image = self.low_res_scheduler.add_noise(image, noise, noise_level) | |
| # image = image.clamp(-1, 1) | |
| # debug | |
| # image = rearrange(image, 'b c t h w -> (b t) c h w').contiguous().cpu() | |
| # return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None) | |
| batch_multiplier = 2 if do_classifier_free_guidance else 1 | |
| image = torch.cat([image] * batch_multiplier * num_images_per_prompt) | |
| # TODO: | |
| # noise_level = noise_level*0 | |
| noise_level = torch.cat([noise_level] * image.shape[0]) | |
| ####################### Random Noise ######################## | |
| # 5. set timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 6. Prepare latent variables | |
| seq_len, height, width = image.shape[2:] | |
| # TODO: for downsample_2x | |
| # height, width = height//2, width//2 | |
| num_channels_latents = self.vae.config.latent_channels | |
| latents = self.prepare_latents_3d( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| seq_len, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) # b c t h w | |
| # print('latents', latents.shape) | |
| ####################### Random Noise + Latent ######################## | |
| # # 5. Prepare timesteps | |
| # self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| # timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength=1, device=device) | |
| # # DEBUG | |
| # # timesteps = self.scheduler.timesteps | |
| # latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
| # # 6. Prepare latent variables | |
| # # b c t h w | |
| # b = image.shape[0] | |
| # num_channels_latents = self.vae.config.latent_channels | |
| # latents = self.prepare_latents_inversion( | |
| # image[:b//2], | |
| # latent_timestep, | |
| # batch_size, | |
| # num_images_per_prompt, | |
| # prompt_embeds.dtype, | |
| # device, | |
| # generator, | |
| # ) | |
| # print('latents', latents.shape) | |
| # 7. Check that sizes of image and latents match | |
| num_channels_image = image.shape[1] | |
| if num_channels_latents + num_channels_image != self.unet.config.in_channels: | |
| raise ValueError( | |
| f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" | |
| f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" | |
| f" `num_channels_image`: {num_channels_image} " | |
| f" = {num_channels_latents+num_channels_image}. Please verify the config of" | |
| " `pipeline.unet` or your `image` input." | |
| ) | |
| # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 9. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| torch.cuda.empty_cache() # delete for VSR | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| # concat latents, mask, masked_image_latents in the channel dimension | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| #latent_model_input = torch.cat([latent_model_input, image], dim=1) | |
| # print(f'========== latent_model_input: {latent_model_input.shape} ============') | |
| # print(f'========== image: {image.shape} ============') | |
| noise_pred = self.unet( | |
| latent_model_input, t, image, encoder_hidden_states=prompt_embeds, class_labels=noise_level | |
| ).sample | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| del latent_model_input, noise_pred | |
| # 10. Post-processing | |
| # make sure the VAE is in float32 mode, as it overflows in float16 | |
| self.vae.to(dtype=torch.float32) | |
| # TODO(Patrick, William) - clean up when attention is refactored | |
| use_torch_2_0_attn = hasattr(F, "scaled_dot_product_attention") | |
| use_xformers = self.vae.decoder.mid_block.attentions[0]._use_memory_efficient_attention_xformers | |
| # if xformers or torch_2_0 is used attention block does not need | |
| # to be in float32 which can save lots of memory | |
| if not use_torch_2_0_attn and not use_xformers: | |
| self.vae.post_quant_conv.to(latents.dtype) | |
| self.vae.decoder.conv_in.to(latents.dtype) | |
| self.vae.decoder.mid_block.to(latents.dtype) | |
| else: | |
| latents = latents.float() | |
| # 11. Convert to frames | |
| short_seq = 4 | |
| # b c t h w | |
| latents = rearrange(latents, 'b c t h w -> (b t) c h w').contiguous() | |
| if latents.shape[0] > short_seq: # for VSR | |
| image = [] | |
| for start_f in range(0, latents.shape[0], short_seq): | |
| torch.cuda.empty_cache() # delete for VSR | |
| end_f = min(latents.shape[0], start_f + short_seq) | |
| image_ = self.decode_latents_vsr(latents[start_f:end_f]) | |
| image.append(image_) | |
| del image_ | |
| image = torch.cat(image, dim=0) | |
| else: | |
| image = self.decode_latents_vsr(latents) | |
| # Offload last model to CPU | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.final_offload_hook.offload() | |
| if not return_dict: | |
| return (image, None) | |
| return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None) | |