Spaces:
Runtime error
Runtime error
| from .unet import UNet3DVSRModel | |
| from torch.optim.lr_scheduler import LambdaLR | |
| def customized_lr_scheduler(optimizer, warmup_steps=5000): # 5000 from u-vit | |
| from torch.optim.lr_scheduler import LambdaLR | |
| def fn(step): | |
| if warmup_steps > 0: | |
| return min(step / warmup_steps, 1) | |
| else: | |
| return 1 | |
| return LambdaLR(optimizer, fn) | |
| def get_lr_scheduler(optimizer, name, **kwargs): | |
| if name == 'warmup': | |
| return customized_lr_scheduler(optimizer, **kwargs) | |
| elif name == 'cosine': | |
| from torch.optim.lr_scheduler import CosineAnnealingLR | |
| return CosineAnnealingLR(optimizer, **kwargs) | |
| else: | |
| raise NotImplementedError(name) | |
| def get_models(): | |
| config_path = "./configs/unet_3d_config.json" | |
| pretrained_model_path = "./pretrained_models/upscaler4x/unet/diffusion_pytorch_model.bin" | |
| return UNet3DVSRModel.from_pretrained_2d(config_path, pretrained_model_path) | |