Spaces:
Build error
Build error
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| class AttentionMaskConverter: | |
| """ | |
| A utility attention mask class that allows one to: | |
| - Create a causal 4d mask | |
| - Create a causal 4d mask with slided window | |
| - Convert a 2d attention mask (batch_size, query_length) to a 4d attention mask (batch_size, 1, query_length, | |
| key_value_length) that can be multiplied with attention scores | |
| Parameters: | |
| is_causal (`bool`): | |
| Whether the attention mask should be a uni-directional (causal) or bi-directional mask. | |
| sliding_window (`int`, *optional*): | |
| Optionally, the sliding window masks can be created if `sliding_window` is defined to a positive integer. | |
| """ | |
| def __init__(self, is_causal: bool, sliding_window: Optional[int] = None): | |
| self.is_causal = is_causal | |
| self.sliding_window = sliding_window | |
| if self.sliding_window is not None and self.sliding_window <= 0: | |
| raise ValueError( | |
| f"Make sure that when passing `sliding_window` that its value is a strictly positive integer, not `{self.sliding_window}`" | |
| ) | |
| def to_causal_4d( | |
| self, | |
| batch_size: int, | |
| query_length: int, | |
| key_value_length: int, | |
| dtype: torch.dtype = torch.float32, | |
| device: Union[torch.device, "str"] = "cpu", | |
| ) -> torch.Tensor: | |
| """ | |
| Creates a causal 4D mask of (bsz, head_dim=1, query_length, key_value_length) shape and adds large negative | |
| bias to upper right hand triangular matrix (causal mask). | |
| """ | |
| if not self.is_causal: | |
| raise ValueError(f"Please use `to_causal_4d` only if {self.__class__} has `is_causal` set to True.") | |
| # If shape is not cached, create a new causal mask and cache it | |
| input_shape = (batch_size, query_length) | |
| past_key_values_length = key_value_length - query_length | |
| # create causal mask | |
| # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
| causal_4d_mask = None | |
| if input_shape[-1] > 1 or self.sliding_window is not None: | |
| causal_4d_mask = self._make_causal_mask( | |
| input_shape, | |
| dtype, | |
| device=device, | |
| past_key_values_length=past_key_values_length, | |
| sliding_window=self.sliding_window, | |
| ) | |
| return causal_4d_mask | |
| def to_4d( | |
| self, | |
| attention_mask_2d: torch.Tensor, | |
| query_length: int, | |
| key_value_length: Optional[int] = None, | |
| dtype: torch.dtype = torch.float32, | |
| ) -> torch.Tensor: | |
| """ | |
| Converts 2D attention mask to 4D attention mask by expanding mask to (bsz, head_dim=1, query_length, | |
| key_value_length) shape and by adding a large negative bias to not-attended positions. If attention_mask is | |
| causal, a causal mask will be added. | |
| """ | |
| input_shape = (attention_mask_2d.shape[0], query_length) | |
| # create causal mask | |
| # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
| causal_4d_mask = None | |
| if (input_shape[-1] > 1 or self.sliding_window is not None) and self.is_causal: | |
| if key_value_length is None: | |
| raise ValueError( | |
| "This attention mask converter is causal. Make sure to pass `key_value_length` to correctly create a causal mask." | |
| ) | |
| past_key_values_length = key_value_length - query_length | |
| causal_4d_mask = self._make_causal_mask( | |
| input_shape, | |
| dtype, | |
| device=attention_mask_2d.device, | |
| past_key_values_length=past_key_values_length, | |
| sliding_window=self.sliding_window, | |
| ) | |
| elif self.sliding_window is not None: | |
| raise NotImplementedError("Sliding window is currently only implemented for causal masking") | |
| # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
| expanded_attn_mask = self._expand_mask(attention_mask_2d, dtype, tgt_len=input_shape[-1]).to( | |
| attention_mask_2d.device | |
| ) | |
| expanded_4d_mask = expanded_attn_mask if causal_4d_mask is None else expanded_attn_mask + causal_4d_mask | |
| return expanded_4d_mask | |
| def _make_causal_mask( | |
| input_ids_shape: torch.Size, | |
| dtype: torch.dtype, | |
| device: torch.device, | |
| past_key_values_length: int = 0, | |
| sliding_window: Optional[int] = None, | |
| ): | |
| """ | |
| Make causal mask used for bi-directional self-attention. | |
| """ | |
| bsz, tgt_len = input_ids_shape | |
| mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) | |
| mask_cond = torch.arange(mask.size(-1), device=device) | |
| mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) | |
| mask = mask.to(dtype) | |
| if past_key_values_length > 0: | |
| mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) | |
| # add lower triangular sliding window mask if necessary | |
| if sliding_window is not None: | |
| diagonal = past_key_values_length - sliding_window + 1 | |
| context_mask = 1 - torch.triu(torch.ones_like(mask, dtype=torch.int), diagonal=diagonal) | |
| mask.masked_fill_(context_mask.bool(), torch.finfo(dtype).min) | |
| return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) | |
| def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | |
| """ | |
| Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. | |
| """ | |
| bsz, src_len = mask.size() | |
| tgt_len = tgt_len if tgt_len is not None else src_len | |
| expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) | |
| inverted_mask = 1.0 - expanded_mask | |
| return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) | |
| def _prepare_4d_causal_attention_mask( | |
| attention_mask: Optional[torch.Tensor], | |
| input_shape: Union[torch.Size, Tuple, List], | |
| inputs_embeds: torch.Tensor, | |
| past_key_values_length: int, | |
| sliding_window: Optional[int] = None, | |
| ): | |
| """ | |
| Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | |
| `(batch_size, key_value_length)` | |
| Args: | |
| attention_mask (`torch.Tensor` or `None`): | |
| A 2D attention mask of shape `(batch_size, key_value_length)` | |
| input_shape (`tuple(int)` or `list(int)` or `torch.Size`): | |
| The input shape should be a tuple that defines `(batch_size, query_length)`. | |
| inputs_embeds (`torch.Tensor`): | |
| The embedded inputs as a torch Tensor. | |
| past_key_values_length (`int`): | |
| The length of the key value cache. | |
| sliding_window (`int`, *optional*): | |
| If the model uses windowed attention, a sliding window should be passed. | |
| """ | |
| attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window) | |
| key_value_length = input_shape[-1] + past_key_values_length | |
| # 4d mask is passed through the layers | |
| if attention_mask is not None: | |
| attention_mask = attn_mask_converter.to_4d( | |
| attention_mask, input_shape[-1], key_value_length, dtype=inputs_embeds.dtype | |
| ) | |
| else: | |
| attention_mask = attn_mask_converter.to_causal_4d( | |
| input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device | |
| ) | |
| return attention_mask | |
| def _prepare_4d_attention_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | |
| """ | |
| Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | |
| `(batch_size, key_value_length)` | |
| Args: | |
| mask (`torch.Tensor` or `None`): | |
| A 2D attention mask of shape `(batch_size, key_value_length)` | |
| dtype (`torch.dtype`): | |
| The torch dtype the created mask shall have. | |
| tgt_len (`int`): | |
| The target length or query length the created mask shall have. | |
| """ | |
| return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len) | |
| def _create_4d_causal_attention_mask( | |
| input_shape: Union[torch.Size, Tuple, List], | |
| dtype: torch.dtype, | |
| device: torch.device, | |
| past_key_values_length: int = 0, | |
| sliding_window: Optional[int] = None, | |
| ): | |
| """ | |
| Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` | |
| Args: | |
| input_shape (`tuple(int)` or `list(int)` or `torch.Size`): | |
| The input shape should be a tuple that defines `(batch_size, query_length)`. | |
| dtype (`torch.dtype`): | |
| The torch dtype the created mask shall have. | |
| device (`int`): | |
| The torch device the created mask shall have. | |
| sliding_window (`int`, *optional*): | |
| If the model uses windowed attention, a sliding window should be passed. | |
| """ | |
| attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window) | |
| key_value_length = past_key_values_length + input_shape[-1] | |
| attention_mask = attn_mask_converter.to_causal_4d( | |
| input_shape[0], input_shape[-1], key_value_length, dtype=dtype, device=device | |
| ) | |
| return attention_mask |