Spaces:
Runtime error
Runtime error
Commit
·
25b680f
1
Parent(s):
495ee6e
new llm
Browse files
app.py
CHANGED
@@ -1,63 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
-
from
|
4 |
-
|
5 |
import torch
|
6 |
|
7 |
-
app = FastAPI(title="
|
8 |
-
|
9 |
-
# Model configuration
|
10 |
-
CHECKPOINT = "HuggingFaceTB/SmolLM2-135M-Instruct"
|
11 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
-
# Initialize model and
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
19 |
|
20 |
-
class
|
21 |
role: str
|
22 |
content: str
|
23 |
|
24 |
class ChatRequest(BaseModel):
|
25 |
-
messages: List[
|
26 |
-
max_new_tokens: int =
|
27 |
-
|
28 |
-
|
|
|
29 |
|
30 |
-
@app.post("/generate")
|
31 |
-
async def
|
32 |
try:
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
# Prepare input
|
37 |
-
input_text = tokenizer.apply_chat_template(messages, tokenize=False)
|
38 |
-
inputs = tokenizer.encode(input_text, return_tensors="pt").to(DEVICE)
|
39 |
-
|
40 |
-
# Generate response
|
41 |
-
outputs = model.generate(
|
42 |
-
inputs,
|
43 |
max_new_tokens=request.max_new_tokens,
|
44 |
-
temperature=request.temperature,
|
45 |
-
top_p=request.top_p,
|
46 |
-
do_sample=True
|
47 |
)
|
48 |
|
49 |
-
#
|
50 |
-
|
51 |
|
52 |
-
return
|
53 |
-
"generated_text": response_text
|
54 |
-
}
|
55 |
|
56 |
except Exception as e:
|
57 |
raise HTTPException(status_code=500, detail=str(e))
|
58 |
|
|
|
|
|
|
|
|
|
|
|
59 |
if __name__ == "__main__":
|
60 |
import uvicorn
|
61 |
-
uvicorn.run(app, host="0.0.0.0", port=
|
62 |
-
|
63 |
-
|
|
|
1 |
+
# from fastapi import FastAPI, HTTPException
|
2 |
+
# from pydantic import BaseModel
|
3 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
# from typing import List
|
5 |
+
# import torch
|
6 |
+
|
7 |
+
# app = FastAPI(title="Language Model API")
|
8 |
+
|
9 |
+
# # Model configuration
|
10 |
+
# CHECKPOINT = "HuggingFaceTB/SmolLM2-135M-Instruct"
|
11 |
+
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
|
13 |
+
# # Initialize model and tokenizer
|
14 |
+
# try:
|
15 |
+
# tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT)
|
16 |
+
# model = AutoModelForCausalLM.from_pretrained(CHECKPOINT).to(DEVICE)
|
17 |
+
# except Exception as e:
|
18 |
+
# raise RuntimeError(f"Failed to load model: {str(e)}")
|
19 |
+
|
20 |
+
# class ChatMessage(BaseModel):
|
21 |
+
# role: str
|
22 |
+
# content: str
|
23 |
+
|
24 |
+
# class ChatRequest(BaseModel):
|
25 |
+
# messages: List[ChatMessage]
|
26 |
+
# max_new_tokens: int = 50
|
27 |
+
# temperature: float = 0.2
|
28 |
+
# top_p: float = 0.9
|
29 |
+
|
30 |
+
# @app.post("/generate")
|
31 |
+
# async def generate_response(request: ChatRequest):
|
32 |
+
# try:
|
33 |
+
# # Convert messages to the format expected by the model
|
34 |
+
# messages = [{"role": msg.role, "content": msg.content} for msg in request.messages]
|
35 |
+
|
36 |
+
# # Prepare input
|
37 |
+
# input_text = tokenizer.apply_chat_template(messages, tokenize=False)
|
38 |
+
# inputs = tokenizer.encode(input_text, return_tensors="pt").to(DEVICE)
|
39 |
+
|
40 |
+
# # Generate response
|
41 |
+
# outputs = model.generate(
|
42 |
+
# inputs,
|
43 |
+
# max_new_tokens=request.max_new_tokens,
|
44 |
+
# temperature=request.temperature,
|
45 |
+
# top_p=request.top_p,
|
46 |
+
# do_sample=True
|
47 |
+
# )
|
48 |
+
|
49 |
+
# # Decode and return response
|
50 |
+
# response_text = tokenizer.decode(outputs[0])
|
51 |
+
|
52 |
+
# return {
|
53 |
+
# "generated_text": response_text
|
54 |
+
# }
|
55 |
+
|
56 |
+
# except Exception as e:
|
57 |
+
# raise HTTPException(status_code=500, detail=str(e))
|
58 |
+
|
59 |
+
# if __name__ == "__main__":
|
60 |
+
# import uvicorn
|
61 |
+
# uvicorn.run(app, host="0.0.0.0", port=7860)
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
from fastapi import FastAPI, HTTPException
|
66 |
from pydantic import BaseModel
|
67 |
+
from typing import List, Dict
|
68 |
+
import transformers
|
69 |
import torch
|
70 |
|
71 |
+
app = FastAPI(title="LLaMA API")
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
# Initialize the model and pipeline at startup
|
74 |
+
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
75 |
+
pipeline = transformers.pipeline(
|
76 |
+
"text-generation",
|
77 |
+
model=model_id,
|
78 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
79 |
+
device_map="auto",
|
80 |
+
)
|
81 |
|
82 |
+
class Message(BaseModel):
|
83 |
role: str
|
84 |
content: str
|
85 |
|
86 |
class ChatRequest(BaseModel):
|
87 |
+
messages: List[Message]
|
88 |
+
max_new_tokens: int = 256
|
89 |
+
|
90 |
+
class ChatResponse(BaseModel):
|
91 |
+
generated_text: str
|
92 |
|
93 |
+
@app.post("/generate", response_model=ChatResponse)
|
94 |
+
async def chat(request: ChatRequest):
|
95 |
try:
|
96 |
+
outputs = pipeline(
|
97 |
+
[{"role": msg.role, "content": msg.content} for msg in request.messages],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
max_new_tokens=request.max_new_tokens,
|
|
|
|
|
|
|
99 |
)
|
100 |
|
101 |
+
# Extract the last generated message
|
102 |
+
generated_text = outputs[0]["generated_text"][-1]
|
103 |
|
104 |
+
return ChatResponse(generated_text=generated_text)
|
|
|
|
|
105 |
|
106 |
except Exception as e:
|
107 |
raise HTTPException(status_code=500, detail=str(e))
|
108 |
|
109 |
+
# Health check endpoint
|
110 |
+
@app.get("/")
|
111 |
+
async def health_check():
|
112 |
+
return {"status": "healthy"}
|
113 |
+
|
114 |
if __name__ == "__main__":
|
115 |
import uvicorn
|
116 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|