# enrich.py import pandas as pd import random # Simulate enrichment for now def enrich_company_info(name, website): return { "LinkedIn Employees": random.randint(10, 1000), "Tech Stack": random.choice(["React, Node.js", "PHP, MySQL", "Django, PostgreSQL"]), "Funding (USD)": random.choice([None, 500000, 2000000, 10000000]), "Glassdoor Rating": round(random.uniform(2.5, 4.9), 1), "SSL Secure": website.startswith("https") } def score_lead(row): score = 0 if row["LinkedIn Employees"] > 100: score += 20 if row["Funding (USD)"] and row["Funding (USD)"] > 1000000: score += 30 if row["Glassdoor Rating"] > 4: score += 20 if "React" in row["Tech Stack"] or "Django" in row["Tech Stack"]: score += 20 if row["SSL Secure"]: score += 10 return score def enrich_and_score(df): enriched_data = [] for _, row in df.iterrows(): company_info = enrich_company_info(row['Company Name'], row['Website']) full_data = {**row, **company_info} enriched_data.append(full_data) enriched_df = pd.DataFrame(enriched_data) enriched_df["Lead Score (0-100)"] = enriched_df.apply(score_lead, axis=1) return enriched_df