Spaces:
Sleeping
Sleeping
# enrich.py | |
import pandas as pd | |
import random | |
# Simulate enrichment for now | |
def enrich_company_info(name, website): | |
return { | |
"LinkedIn Employees": random.randint(10, 1000), | |
"Tech Stack": random.choice(["React, Node.js", "PHP, MySQL", "Django, PostgreSQL"]), | |
"Funding (USD)": random.choice([None, 500000, 2000000, 10000000]), | |
"Glassdoor Rating": round(random.uniform(2.5, 4.9), 1), | |
"SSL Secure": website.startswith("https") | |
} | |
def score_lead(row): | |
score = 0 | |
if row["LinkedIn Employees"] > 100: score += 20 | |
if row["Funding (USD)"] and row["Funding (USD)"] > 1000000: score += 30 | |
if row["Glassdoor Rating"] > 4: score += 20 | |
if "React" in row["Tech Stack"] or "Django" in row["Tech Stack"]: score += 20 | |
if row["SSL Secure"]: score += 10 | |
return score | |
def enrich_and_score(df): | |
enriched_data = [] | |
for _, row in df.iterrows(): | |
company_info = enrich_company_info(row['Company Name'], row['Website']) | |
full_data = {**row, **company_info} | |
enriched_data.append(full_data) | |
enriched_df = pd.DataFrame(enriched_data) | |
enriched_df["Lead Score (0-100)"] = enriched_df.apply(score_lead, axis=1) | |
return enriched_df | |