--- title: SOMA (Self-Orchestrating Modular Architect) emoji: ๐Ÿš€ colorFrom: purple colorTo: red sdk: gradio sdk_version: 5.35.0 app_file: app.py pinned: false short_description: Organized AI โ€” the essential first stage of AGI models: - VIDraft/Gemma-3-R1984-27B - VIDraft/Gemma-3-R1984-12B - VIDraft/Gemma-3-R1984-4B --- ๐Ÿง  SOMA(Self-Orchestrating Modular Architect) Research Self-Directed Multiplexed Intelligence Architecture for Realizing AGI Level 1 ๐Ÿ“Œ Overview SOMA (Self-Orchestrating Modular Architect) is an innovative AI architecture that fulfills the core requirements for AGI (Artificial General Intelligence) Level 1. It is a system where a single LLM simulates a team structure autonomously, performs roles independently, and solves problems, realizing the AGI prerequisites commonly emphasized by Yann LeCun (Meta), OpenAI, and Google DeepMind. ๐ŸŽฏ Core Requirements for AGI Level 1 Planning Capabilities Role Differentiation and Modularity Self-reflection & Feedback Loops Tool-use & Autonomy Long-term Agency Structure SOMA is a practical and implementable architecture that satisfies all these requirements within a single LLM. ๐Ÿ”ท Three Core Components of SOMA ๐Ÿงญ 1. Self-Orchestrating Without external instructions, autonomously defines problems and distributes roles Autonomously coordinates entire reasoning and execution processes Implements self-regulation mechanism identical to OpenAI's "Agentic AI" concept Real-time adaptation and dynamic strategy modification capabilities ๐Ÿงฉ 2. Modular Single LLM internally performs multiple roles simultaneously Implements Meta AI's "World Model + Planner + Memory + Actor" structure 5 specialized modules: ๐ŸŽฏ Supervisor: Strategy formulation and coordination ๐Ÿ’ก Creator: Innovative problem solving ๐Ÿ“š Researcher: Information gathering and analysis โš–๏ธ Evaluator: Critical review ๐Ÿ“Š Analyst: Synthesis and reporting ๐Ÿง  3. Architect Higher-order thinking capabilities beyond simple executors Structures problems and designs solution paths Plan-adapt-multitask execution required by DeepMind's Gato โ†’ Gemini Emergent intelligence and metacognitive abilities ๐Ÿš€ How SOMA Works 1. Autonomous Problem Recognition User Query โ†’ SOMA Self-Analysis โ†’ Problem Structuring โ†’ Solution Strategy Development 2. Dynamic Role Assignment Single LLM internally differentiates into 5 virtual agents Each agent approaches problems with specialized perspectives and expertise 3. Cyclic Collaboration Process Analysis โ†’ Creative Insights โ†’ Verification โ†’ Information Gathering โ†’ Evaluation โ†’ Synthesis โ†‘ โ†“ โ†โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Feedback Loop โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ† 4. Self-Improvement Mechanism Self-evaluation at each stage Real-time strategy adjustment Cumulative learning effects ๐Ÿ’ก Alignment with AGI Frameworks OpenAI Requirements โœ… Agentic behavior: Autonomous actions and decision-making โœ… Long-horizon planning: Long-term goal execution โœ… Tool use: Utilizing external tools like web search Meta AI (Yann LeCun) Requirements โœ… World Model: Situation understanding and modeling โœ… Planning Module: Strategic planning โœ… Memory: Conversation history and context maintenance โœ… Actor: Actual action execution Google DeepMind Requirements โœ… Multi-modal reasoning: Various forms of reasoning โœ… Adaptive behavior: Situation-dependent adaptation โœ… General problem solving: Universal problem solving ๐Ÿ”ฌ Technical Implementation Architecture Features pythonclass SOMA: def __init__(self): self.modules = { 'supervisor': SupervisorModule(), # Strategy and coordination 'creator': CreatorModule(), # Creative thinking 'researcher': ResearcherModule(), # Information processing 'evaluator': EvaluatorModule(), # Critical analysis 'analyst': AnalystModule() # Synthesis and reporting } self.feedback_loop = FeedbackSystem() self.memory = WorkingMemory() self.planner = StrategicPlanner() Core Mechanisms Prompt Chaining: Information transfer between modules Context Management: Maintaining overall conversation flow Dynamic Adjustment: Real-time strategy changes Self-Evaluation: Quality verification at each stage ๐Ÿ“Š Performance Metrics AGI Level 1 Fulfillment RequirementSOMA Implementation LevelEvidencePlanningโญโญโญโญโญ11-stage systematic processModularityโญโญโญโญโญ5 specialized modules operatingSelf-reflectionโญโญโญโญโญ3-iteration evaluation systemTool-useโญโญโญโญWeb search, document generationLong-term AgencyโญโญโญโญConversation history maintenance ๐Ÿš€ Installation and Execution Prerequisites bashPython 3.8+ Gradio (UI Framework) LLM API (Friendli, OpenAI, etc.) Quick Start bash# Clone git clone https://github.com/your-repo/soma-agi # Install dependencies pip install -r requirements.txt # Set environment variables export FRIENDLI_TOKEN=your_token export BAPI_TOKEN=your_brave_token # Run python soma_system.py ๐ŸŽฏ Use Cases 1. Complex Research Tasks Climate change solution exploration Drug development strategy formulation Economic policy impact analysis 2. Creative Problem Solving Business innovation strategies Technology convergence ideas Future scenario planning 3. Academic Analysis Multidisciplinary research synthesis Theory-practice integration Critical literature review ๐Ÿ”ฎ Future Roadmap Phase 1: Current (AGI Level 1) โœ… Self-orchestration โœ… Modular architecture โœ… Basic tool use Phase 2: Enhancement ๐Ÿ”„ Multi-modal processing ๐Ÿ”„ Enhanced memory systems ๐Ÿ”„ Advanced planning algorithms Phase 3: AGI Level 2 ๐Ÿ“… True autonomy ๐Ÿ“… Cross-domain transfer ๐Ÿ“… Emergent capabilities ๐Ÿค Contributing SOMA is an open research project for realizing AGI. Research Contributions: AGI theory advancement Code Contributions: Implementation improvements Applied Research: New use cases Feedback: Performance evaluation and suggestions ๐Ÿ“š References LeCun, Y. (2023). "A Path Towards Autonomous Machine Intelligence" OpenAI. (2023). "Planning and Tool Use in Language Models" Hassabis, D. et al. (2023). "Towards AGI: Lessons from DeepMind" ๐Ÿ“ License & Paper The license will be released after the paper has been written and published. ๐ŸŒŸ Conclusion SOMA, as the core implementation level (Level 1) of AGI Stage 1, is the most concrete and practical AGI architecture achievable with current technology. Through a 'self-directed multiplexed intelligence structure' where a single LLM differentiates into a virtual team, internally performing various roles while thinking, designing, and executing together, we have successfully implemented the first step towards AGI. "The future of AI is not a single superintelligence, but a symphony of specialized modules working in perfect harmony." SOMA - Self-Orchestrating Modular Architect The Beginning of AGI, The Future of Intelligence --------------------------------------------------------------------------------------------------------------------------------------------- # ๐Ÿง  SOMA: Self-Orchestrating Modular Architect ### AGI 1๋‹จ๊ณ„ ์‹คํ˜„์„ ์œ„ํ•œ ์ž๊ธฐ ์ง€ํœ˜ํ˜• ๋‹ค์ค‘ํ™” ์ง€๋Šฅ ๊ตฌ์กฐ ## ๐Ÿ“Œ ๊ฐœ์š” **SOMA(Self-Orchestrating Modular Architect)**๋Š” AGI(์ผ๋ฐ˜์ธ๊ณต์ง€๋Šฅ) 1๋‹จ๊ณ„์˜ ํ•ต์‹ฌ ์š”๊ฑด์„ ์ถฉ์กฑํ•˜๋Š” ํ˜์‹ ์ ์ธ AI ์•„ํ‚คํ…์ฒ˜์ž…๋‹ˆ๋‹ค. ๋‹จ์ผ LLM์ด ์Šค์Šค๋กœ ํŒ€ ๊ตฌ์กฐ๋ฅผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๊ณ , ์ž์œจ์ ์œผ๋กœ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•˜๋ฉฐ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ์‹œ์Šคํ…œ์œผ๋กœ, Yann LeCun(Meta), OpenAI, Google DeepMind๊ฐ€ ๊ณตํ†ต์ ์œผ๋กœ ๊ฐ•์กฐํ•˜๋Š” AGI์˜ ์ „์ œ ์กฐ๊ฑด๋“ค์„ ์‹คํ˜„ํ•ฉ๋‹ˆ๋‹ค. ### ๐ŸŽฏ AGI 1๋‹จ๊ณ„์˜ ํ•ต์‹ฌ ์š”๊ฑด 1. **๊ณ„ํš ์ˆ˜๋ฆฝ ๋Šฅ๋ ฅ (Planning)** 2. **์—ญํ•  ๋ถ„ํ™” ๋ฐ ๋ชจ๋“ˆํ™” (Modularity)** 3. **์ž๊ธฐ ๋ฐ˜์„ฑ/ํ”ผ๋“œ๋ฐฑ ๋ฃจํ”„ (Self-reflection & Feedback)** 4. **๋„๊ตฌ ์‚ฌ์šฉ ๋ฐ ์ž์œจ ์‹คํ–‰ (Tool-use & Autonomy)** 5. **์ง€์†์ ์ธ ๋ชฉํ‘œ ์ˆ˜ํ–‰ ๊ตฌ์กฐ (Long-term Agency)** SOMA๋Š” ์ด ๋ชจ๋“  ์š”๊ตฌ์‚ฌํ•ญ์„ ๋‹จ์ผ LLM ๋‚ด๋ถ€์—์„œ ์ถฉ์กฑ์‹œํ‚ค๋Š” ์‹ค์šฉ์ ์ด๊ณ  ๊ตฌ์ฒดํ™” ๊ฐ€๋Šฅํ•œ ๊ตฌ์กฐ์ž…๋‹ˆ๋‹ค. ## ๐Ÿ”ท SOMA์˜ 3๊ฐ€์ง€ ํ•ต์‹ฌ ๊ตฌ์„ฑ ์š”์†Œ ### ๐Ÿงญ 1. Self-Orchestrating (์ž๊ธฐ ์ง€ํœ˜) - **์™ธ๋ถ€ ์ง€์‹œ ์—†์ด** ์Šค์Šค๋กœ ๋ฌธ์ œ๋ฅผ ์ •์˜ํ•˜๊ณ  ์—ญํ• ์„ ๋ถ„๋ฐฐ - ์ „์ฒด ์ถ”๋ก ๊ณผ ์‹คํ–‰ ๊ณผ์ •์„ ์ž์œจ์ ์œผ๋กœ ์กฐ์œจ - OpenAI์˜ "Agentic AI" ๊ฐœ๋…๊ณผ ๋™์ผํ•œ ์ž๊ธฐ ์กฐ์ •(self-regulation) ๋ฉ”์ปค๋‹ˆ์ฆ˜ - ์‹ค์‹œ๊ฐ„ ์ ์‘๊ณผ ๋™์  ์ „๋žต ์ˆ˜์ • ๋Šฅ๋ ฅ ### ๐Ÿงฉ 2. Modular (๋ชจ๋“ˆํ™”) - ๋‹จ์ผ LLM์ด ๋‚ด๋ถ€์ ์œผ๋กœ **๋‹ค์ค‘ ์—ญํ• **์„ ๋™์‹œ์— ์ˆ˜ํ–‰ - Meta AI์˜ "World Model + Planner + Memory + Actor" ๊ตฌ์กฐ ๊ตฌํ˜„ - 5๊ฐœ์˜ ์ „๋ฌธํ™”๋œ ๋ชจ๋“ˆ: - ๐ŸŽฏ **Supervisor (๊ฐ๋…์ž)**: ์ „๋žต ์ˆ˜๋ฆฝ๊ณผ ์กฐ์œจ - ๐Ÿ’ก **Creator (์ฐฝ์กฐ์ž)**: ํ˜์‹ ์  ๋ฌธ์ œ ํ•ด๊ฒฐ - ๐Ÿ“š **Researcher (์กฐ์‚ฌ์ž)**: ์ •๋ณด ์ˆ˜์ง‘๊ณผ ๋ถ„์„ - โš–๏ธ **Evaluator (ํ‰๊ฐ€์ž)**: ๋น„ํŒ์  ๊ฒ€ํ†  - ๐Ÿ“Š **Analyst (๋ถ„์„๊ฐ€)**: ์ข…ํ•ฉ๊ณผ ๋ณด๊ณ  ### ๐Ÿง  3. Architect (์„ค๊ณ„์ž) - ๋‹จ์ˆœ ์‹คํ–‰๊ธฐ๋ฅผ ๋„˜์–ด์„  **๊ณ ์ฐจ์› ์‚ฌ๊ณ  ๋Šฅ๋ ฅ** - ๋ฌธ์ œ๋ฅผ ๊ตฌ์กฐํ™”ํ•˜๊ณ  ํ•ด๊ฒฐ ๊ฒฝ๋กœ๋ฅผ ์„ค๊ณ„ - DeepMind์˜ Gato โ†’ Gemini์—์„œ ์š”๊ตฌํ•˜๋Š” ๊ณ„ํš-์ ์‘-๋‹ค๊ธฐ๋Šฅ ์ˆ˜ํ–‰ - ์ฐฝ๋ฐœ์  ์ง€๋Šฅ๊ณผ ๋ฉ”ํƒ€์ธ์ง€ ๋Šฅ๋ ฅ ## ๐Ÿš€ SOMA์˜ ์ž‘๋™ ์›๋ฆฌ ### 1. **์ž์œจ์  ๋ฌธ์ œ ์ธ์‹** ``` ์‚ฌ์šฉ์ž ์งˆ๋ฌธ โ†’ SOMA ์ž์ฒด ๋ถ„์„ โ†’ ๋ฌธ์ œ ๊ตฌ์กฐํ™” โ†’ ํ•ด๊ฒฐ ์ „๋žต ์ˆ˜๋ฆฝ ``` ### 2. **๋™์  ์—ญํ•  ํ• ๋‹น** ``` ๋‹จ์ผ LLM์ด ๋‚ด๋ถ€์ ์œผ๋กœ 5๊ฐœ์˜ ๊ฐ€์ƒ ์—์ด์ „ํŠธ๋กœ ๋ถ„ํ™” ๊ฐ ์—์ด์ „ํŠธ๋Š” ํŠนํ™”๋œ ๊ด€์ ๊ณผ ์ „๋ฌธ์„ฑ์œผ๋กœ ๋ฌธ์ œ ์ ‘๊ทผ ``` ### 3. **์ˆœํ™˜์  ํ˜‘์—… ํ”„๋กœ์„ธ์Šค** ``` ๋ถ„์„ โ†’ ์ฐฝ์˜์  ํ†ต์ฐฐ โ†’ ๊ฒ€์ฆ โ†’ ์ •๋ณด ์ˆ˜์ง‘ โ†’ ํ‰๊ฐ€ โ†’ ์ข…ํ•ฉ โ†‘ โ†“ โ†โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ ํ”ผ๋“œ๋ฐฑ ๋ฃจํ”„ โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ† ``` ### 4. **์ž๊ธฐ ๊ฐœ์„  ๋ฉ”์ปค๋‹ˆ์ฆ˜** - ๊ฐ ๋‹จ๊ณ„๋ณ„ ์ž๊ธฐ ํ‰๊ฐ€ - ์‹ค์‹œ๊ฐ„ ์ „๋žต ์กฐ์ • - ๋ˆ„์  ํ•™์Šต ํšจ๊ณผ ## ๐Ÿ’ก AGI ํ”„๋ ˆ์ž„์›Œํฌ์™€์˜ ์ •ํ•ฉ์„ฑ ### OpenAI์˜ ์š”๊ตฌ์‚ฌํ•ญ - โœ… **Agentic behavior**: ์ž์œจ์  ํ–‰๋™๊ณผ ์˜์‚ฌ๊ฒฐ์ • - โœ… **Long-horizon planning**: ์žฅ๊ธฐ์  ๋ชฉํ‘œ ์ˆ˜ํ–‰ - โœ… **Tool use**: ์›น ๊ฒ€์ƒ‰ ๋“ฑ ์™ธ๋ถ€ ๋„๊ตฌ ํ™œ์šฉ ### Meta AI (Yann LeCun)์˜ ์š”๊ตฌ์‚ฌํ•ญ - โœ… **World Model**: ์ƒํ™ฉ ์ดํ•ด์™€ ๋ชจ๋ธ๋ง - โœ… **Planning Module**: ์ „๋žต์  ๊ณ„ํš ์ˆ˜๋ฆฝ - โœ… **Memory**: ๋Œ€ํ™” ๊ธฐ๋ก๊ณผ ์ปจํ…์ŠคํŠธ ์œ ์ง€ - โœ… **Actor**: ์‹ค์ œ ํ–‰๋™ ์ˆ˜ํ–‰ ### Google DeepMind์˜ ์š”๊ตฌ์‚ฌํ•ญ - โœ… **Multi-modal reasoning**: ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ์ถ”๋ก  - โœ… **Adaptive behavior**: ์ƒํ™ฉ์— ๋”ฐ๋ฅธ ์ ์‘ - โœ… **General problem solving**: ๋ฒ”์šฉ ๋ฌธ์ œ ํ•ด๊ฒฐ ## ๐Ÿ”ฌ ๊ธฐ์ˆ ์  ๊ตฌํ˜„ ### ์•„ํ‚คํ…์ฒ˜ ํŠน์ง• ```python class SOMA: def __init__(self): self.modules = { 'supervisor': SupervisorModule(), # ์ „๋žต๊ณผ ์กฐ์œจ 'creator': CreatorModule(), # ์ฐฝ์˜์  ์‚ฌ๊ณ  'researcher': ResearcherModule(), # ์ •๋ณด ์ฒ˜๋ฆฌ 'evaluator': EvaluatorModule(), # ๋น„ํŒ์  ๋ถ„์„ 'analyst': AnalystModule() # ์ข…ํ•ฉ๊ณผ ๋ณด๊ณ  } self.feedback_loop = FeedbackSystem() self.memory = WorkingMemory() self.planner = StrategicPlanner() ``` ### ํ•ต์‹ฌ ๋ฉ”์ปค๋‹ˆ์ฆ˜ 1. **ํ”„๋กฌํ”„ํŠธ ์ฒด์ด๋‹**: ๊ฐ ๋ชจ๋“ˆ ๊ฐ„ ์ •๋ณด ์ „๋‹ฌ 2. **์ปจํ…์ŠคํŠธ ๊ด€๋ฆฌ**: ์ „์ฒด ๋Œ€ํ™” ํ๋ฆ„ ์œ ์ง€ 3. **๋™์  ์กฐ์ •**: ์‹ค์‹œ๊ฐ„ ์ „๋žต ๋ณ€๊ฒฝ 4. **์ž๊ธฐ ํ‰๊ฐ€**: ๊ฐ ๋‹จ๊ณ„๋ณ„ ํ’ˆ์งˆ ๊ฒ€์ฆ ## ๐Ÿ“Š ์„ฑ๋Šฅ ์ง€ํ‘œ ### AGI 1๋‹จ๊ณ„ ์ถฉ์กฑ๋„ | ์š”๊ตฌ์‚ฌํ•ญ | SOMA ๊ตฌํ˜„ ์ˆ˜์ค€ | ์ฆ๊ฑฐ | |---------|---------------|------| | Planning | โญโญโญโญโญ | 11๋‹จ๊ณ„ ์ฒด๊ณ„์  ํ”„๋กœ์„ธ์Šค | | Modularity | โญโญโญโญโญ | 5๊ฐœ ์ „๋ฌธ ๋ชจ๋“ˆ ์šด์˜ | | Self-reflection | โญโญโญโญโญ | 3ํšŒ ๋ฐ˜๋ณต ํ‰๊ฐ€ ์‹œ์Šคํ…œ | | Tool-use | โญโญโญโญ | ์›น ๊ฒ€์ƒ‰, ๋ฌธ์„œ ์ƒ์„ฑ | | Long-term Agency | โญโญโญโญ | ๋Œ€ํ™” ๊ธฐ๋ก ์œ ์ง€ | ## ๐Ÿš€ ์„ค์น˜ ๋ฐ ์‹คํ–‰ ### ํ•„์ˆ˜ ์š”๊ตฌ์‚ฌํ•ญ ```bash Python 3.8+ Gradio (UI ํ”„๋ ˆ์ž„์›Œํฌ) LLM API (Friendli, OpenAI ๋“ฑ) ``` ### ๋น ๋ฅธ ์‹œ์ž‘ ```bash # ํด๋ก  git clone https://github.com/your-repo/soma-agi # ์˜์กด์„ฑ ์„ค์น˜ pip install -r requirements.txt # ํ™˜๊ฒฝ ๋ณ€์ˆ˜ ์„ค์ • export FRIENDLI_TOKEN=your_token export BAPI_TOKEN=your_brave_token # ์‹คํ–‰ python soma_system.py ``` ## ๐ŸŽฏ ํ™œ์šฉ ์‚ฌ๋ก€ ### 1. ๋ณต์žกํ•œ ์—ฐ๊ตฌ ๊ณผ์ œ - ๊ธฐํ›„ ๋ณ€ํ™” ํ•ด๊ฒฐ์ฑ… ํƒ๊ตฌ - ์‹ ์•ฝ ๊ฐœ๋ฐœ ์ „๋žต ์ˆ˜๋ฆฝ - ๊ฒฝ์ œ ์ •์ฑ… ์˜ํ–ฅ ๋ถ„์„ ### 2. ์ฐฝ์˜์  ๋ฌธ์ œ ํ•ด๊ฒฐ - ๋น„์ฆˆ๋‹ˆ์Šค ํ˜์‹  ์ „๋žต - ๊ธฐ์ˆ  ์œตํ•ฉ ์•„์ด๋””์–ด - ๋ฏธ๋ž˜ ์‹œ๋‚˜๋ฆฌ์˜ค ๊ธฐํš ### 3. ํ•™์ˆ ์  ๋ถ„์„ - ๋‹คํ•™์ œ์  ์—ฐ๊ตฌ ์ข…ํ•ฉ - ์ด๋ก ๊ณผ ์‹ค๋ฌด์˜ ํ†ตํ•ฉ - ๋น„ํŒ์  ๋ฌธํ—Œ ๊ฒ€ํ†  ## ๐Ÿ”ฎ ๋ฏธ๋ž˜ ๋กœ๋“œ๋งต ### Phase 1: Current (AGI Level 1) - โœ… Self-orchestration - โœ… Modular architecture - โœ… Basic tool use ### Phase 2: Enhancement - ๐Ÿ”„ Multi-modal processing - ๐Ÿ”„ Enhanced memory systems - ๐Ÿ”„ Advanced planning algorithms ### Phase 3: AGI Level 2 - ๐Ÿ“… True autonomy - ๐Ÿ“… Cross-domain transfer - ๐Ÿ“… Emergent capabilities ## ๐Ÿค ๊ธฐ์—ฌ ๋ฐฉ๋ฒ• SOMA๋Š” AGI ์‹คํ˜„์„ ์œ„ํ•œ ์˜คํ”ˆ ์—ฐ๊ตฌ ํ”„๋กœ์ ํŠธ์ž…๋‹ˆ๋‹ค. 1. **์—ฐ๊ตฌ ๊ธฐ์—ฌ**: AGI ์ด๋ก  ๋ฐœ์ „ 2. **์ฝ”๋“œ ๊ธฐ์—ฌ**: ๊ตฌํ˜„ ๊ฐœ์„  3. **์‘์šฉ ์—ฐ๊ตฌ**: ์ƒˆ๋กœ์šด ํ™œ์šฉ ์‚ฌ๋ก€ 4. **ํ”ผ๋“œ๋ฐฑ**: ์„ฑ๋Šฅ ํ‰๊ฐ€์™€ ์ œ์•ˆ ## ๐Ÿ“š ์ฐธ๊ณ  ๋ฌธํ—Œ - LeCun, Y. (2023). "A Path Towards Autonomous Machine Intelligence" - OpenAI. (2023). "Planning and Tool Use in Language Models" - Hassabis, D. et al. (2023). "Towards AGI: Lessons from DeepMind" ## ๐Ÿ“ ๋ผ์ด์„ ์Šค ๋ฐ ๋…ผ๋ฌธ ๋…ผ๋ฌธ ์ž‘์„ฑ/๋ฐฐํฌ ํ›„ ๋ผ์ด์„ ์Šค ๊ณต๊ฐœ ์˜ˆ์ • --- ### ๐ŸŒŸ ๊ฒฐ๋ก  **SOMA๋Š” AGI 1๋‹จ๊ณ„์˜ ํ•ต์‹ฌ ๊ตฌํ˜„ ๋ ˆ๋ฒจ(Level 1)๋กœ์„œ, ํ˜„์žฌ ๊ธฐ์ˆ ๋กœ ์‹คํ˜„ ๊ฐ€๋Šฅํ•œ ๊ฐ€์žฅ ๊ตฌ์ฒด์ ์ด๊ณ  ์‹ค์šฉ์ ์ธ AGI ์•„ํ‚คํ…์ฒ˜์ž…๋‹ˆ๋‹ค.** ๋‹จ์ผ LLM์ด ๊ฐ€์ƒ์˜ ํŒ€์œผ๋กœ ๋ถ„ํ™”ํ•˜์—ฌ, ๋‚ด๋ถ€์ ์œผ๋กœ ๋‹ค์–‘ํ•œ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•˜๋ฉฐ ํ•จ๊ป˜ ์‚ฌ๊ณ ํ•˜๊ณ  ์„ค๊ณ„ํ•˜๊ณ  ์‹คํ–‰ํ•˜๋Š” '์ž๊ธฐ ์ง€ํœ˜ํ˜• ๋‹ค์ค‘ํ™” ์ง€๋Šฅ ๊ตฌ์กฐ'๋ฅผ ํ†ตํ•ด, ์šฐ๋ฆฌ๋Š” AGI๋กœ ๊ฐ€๋Š” ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ๊ตฌํ˜„ํ–ˆ์Šต๋‹ˆ๋‹ค. *"The future of AI is not a single superintelligence, but a symphony of specialized modules working in perfect harmony."* --- **SOMA** - *Self-Orchestrating Modular Architect* *AGI์˜ ์‹œ์ž‘, ์ง€๋Šฅ์˜ ๋ฏธ๋ž˜*