Spaces:
Running
Running
| import torch | |
| import gradio as gr | |
| import spaces | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| import os | |
| from threading import Thread | |
| import random | |
| from datasets import load_dataset | |
| import numpy as np | |
| from sklearn.feature_extraction.text import TfidfVectorizer | |
| import pandas as pd | |
| from typing import List, Tuple | |
| import json | |
| from datetime import datetime | |
| import pyarrow.parquet as pq | |
| import pypdf | |
| import io | |
| import pyarrow.parquet as pq | |
| from pdfminer.high_level import extract_text | |
| from pdfminer.layout import LAParams | |
| from tabulate import tabulate # tabulate ์ถ๊ฐ | |
| import platform | |
| import subprocess | |
| import pytesseract | |
| from pdf2image import convert_from_path | |
| # ์ ์ญ ๋ณ์ ์ถ๊ฐ | |
| current_file_context = None | |
| # ํ๊ฒฝ ๋ณ์ ์ค์ | |
| HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
| MODEL_ID = "CohereForAI/c4ai-command-r7b-12-2024" | |
| MODELS = os.environ.get("MODELS") | |
| MODEL_NAME = MODEL_ID.split("/")[-1] | |
| model = None # ์ ์ญ ๋ณ์๋ก ์ ์ธ | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
| # ์ํคํผ๋์ ๋ฐ์ดํฐ์ ๋ก๋ | |
| wiki_dataset = load_dataset("lcw99/wikipedia-korean-20240501-1million-qna") | |
| print("Wikipedia dataset loaded:", wiki_dataset) | |
| # TF-IDF ๋ฒกํฐ๋ผ์ด์ ์ด๊ธฐํ ๋ฐ ํ์ต | |
| print("TF-IDF ๋ฒกํฐํ ์์...") | |
| questions = wiki_dataset['train']['question'][:10000] # ์ฒ์ 10000๊ฐ๋ง ์ฌ์ฉ | |
| vectorizer = TfidfVectorizer(max_features=1000) | |
| question_vectors = vectorizer.fit_transform(questions) | |
| print("TF-IDF ๋ฒกํฐํ ์๋ฃ") | |
| class ChatHistory: | |
| def __init__(self): | |
| self.history = [] | |
| self.history_file = "/tmp/chat_history.json" | |
| self.load_history() | |
| def add_conversation(self, user_msg: str, assistant_msg: str): | |
| conversation = { | |
| "timestamp": datetime.now().isoformat(), | |
| "messages": [ | |
| {"role": "user", "content": user_msg}, | |
| {"role": "assistant", "content": assistant_msg} | |
| ] | |
| } | |
| self.history.append(conversation) | |
| self.save_history() | |
| def format_for_display(self): | |
| formatted = [] | |
| for conv in self.history: | |
| formatted.append([ | |
| conv["messages"][0]["content"], | |
| conv["messages"][1]["content"] | |
| ]) | |
| return formatted | |
| def get_messages_for_api(self): | |
| messages = [] | |
| for conv in self.history: | |
| messages.extend([ | |
| {"role": "user", "content": conv["messages"][0]["content"]}, | |
| {"role": "assistant", "content": conv["messages"][1]["content"]} | |
| ]) | |
| return messages | |
| def clear_history(self): | |
| self.history = [] | |
| self.save_history() | |
| def save_history(self): | |
| try: | |
| with open(self.history_file, 'w', encoding='utf-8') as f: | |
| json.dump(self.history, f, ensure_ascii=False, indent=2) | |
| except Exception as e: | |
| print(f"ํ์คํ ๋ฆฌ ์ ์ฅ ์คํจ: {e}") | |
| def load_history(self): | |
| try: | |
| if os.path.exists(self.history_file): | |
| with open(self.history_file, 'r', encoding='utf-8') as f: | |
| self.history = json.load(f) | |
| except Exception as e: | |
| print(f"ํ์คํ ๋ฆฌ ๋ก๋ ์คํจ: {e}") | |
| self.history = [] | |
| # ์ ์ญ ChatHistory ์ธ์คํด์ค ์์ฑ | |
| chat_history = ChatHistory() | |
| def find_relevant_context(query, top_k=3): | |
| # ์ฟผ๋ฆฌ ๋ฒกํฐํ | |
| query_vector = vectorizer.transform([query]) | |
| # ์ฝ์ฌ์ธ ์ ์ฌ๋ ๊ณ์ฐ | |
| similarities = (query_vector * question_vectors.T).toarray()[0] | |
| # ๊ฐ์ฅ ์ ์ฌํ ์ง๋ฌธ๋ค์ ์ธ๋ฑ์ค | |
| top_indices = np.argsort(similarities)[-top_k:][::-1] | |
| # ๊ด๋ จ ์ปจํ ์คํธ ์ถ์ถ | |
| relevant_contexts = [] | |
| for idx in top_indices: | |
| if similarities[idx] > 0: | |
| relevant_contexts.append({ | |
| 'question': questions[idx], | |
| 'answer': wiki_dataset['train']['answer'][idx], | |
| 'similarity': similarities[idx] | |
| }) | |
| return relevant_contexts | |
| def init_msg(): | |
| return "Analyzing file..." | |
| def analyze_file_content(content, file_type): | |
| """Analyze file content and return structural summary""" | |
| if file_type in ['parquet', 'csv']: | |
| try: | |
| lines = content.split('\n') | |
| header = lines[0] | |
| columns = header.count('|') - 1 | |
| rows = len(lines) - 3 | |
| return f"๐ Dataset Structure: {columns} columns, {rows} rows" | |
| except: | |
| return "โ Failed to analyze dataset structure" | |
| lines = content.split('\n') | |
| total_lines = len(lines) | |
| non_empty_lines = len([line for line in lines if line.strip()]) | |
| if any(keyword in content.lower() for keyword in ['def ', 'class ', 'import ', 'function']): | |
| functions = len([line for line in lines if 'def ' in line]) | |
| classes = len([line for line in lines if 'class ' in line]) | |
| imports = len([line for line in lines if 'import ' in line or 'from ' in line]) | |
| return f"๐ป Code Structure: {total_lines} lines (Functions: {functions}, Classes: {classes}, Imports: {imports})" | |
| paragraphs = content.count('\n\n') + 1 | |
| words = len(content.split()) | |
| return f"๐ Document Structure: {total_lines} lines, {paragraphs} paragraphs, approximately {words} words" | |
| def read_uploaded_file(file): | |
| if file is None: | |
| return "", "" | |
| try: | |
| file_ext = os.path.splitext(file.name)[1].lower() | |
| # Parquet file processing | |
| if file_ext == '.parquet': | |
| try: | |
| table = pq.read_table(file.name) | |
| df = table.to_pandas() | |
| content = f"๐ Parquet File Analysis:\n\n" | |
| content += f"1. Basic Information:\n" | |
| content += f"- Total Rows: {len(df):,}\n" | |
| content += f"- Total Columns: {len(df.columns)}\n" | |
| content += f"- Memory Usage: {df.memory_usage(deep=True).sum() / 1024 / 1024:.2f} MB\n\n" | |
| content += f"2. Column Information:\n" | |
| for col in df.columns: | |
| content += f"- {col} ({df[col].dtype})\n" | |
| content += f"\n3. Data Preview:\n" | |
| content += tabulate(df.head(5), headers='keys', tablefmt='pipe', showindex=False) | |
| content += f"\n\n4. Missing Values:\n" | |
| null_counts = df.isnull().sum() | |
| for col, count in null_counts[null_counts > 0].items(): | |
| content += f"- {col}: {count:,} ({count/len(df)*100:.1f}%)\n" | |
| numeric_cols = df.select_dtypes(include=['int64', 'float64']).columns | |
| if len(numeric_cols) > 0: | |
| content += f"\n5. Numeric Column Statistics:\n" | |
| stats_df = df[numeric_cols].describe() | |
| content += tabulate(stats_df, headers='keys', tablefmt='pipe') | |
| return content, "parquet" | |
| except Exception as e: | |
| return f"Error reading Parquet file: {str(e)}", "error" | |
| # PDF file processing | |
| if file_ext == '.pdf': | |
| try: | |
| pdf_reader = pypdf.PdfReader(file.name) | |
| total_pages = len(pdf_reader.pages) | |
| content = f"๐ PDF Document Analysis:\n\n" | |
| content += f"1. Basic Information:\n" | |
| content += f"- Total Pages: {total_pages}\n" | |
| if pdf_reader.metadata: | |
| content += "\n2. Metadata:\n" | |
| for key, value in pdf_reader.metadata.items(): | |
| if value and str(key).startswith('/'): | |
| content += f"- {key[1:]}: {value}\n" | |
| try: | |
| text = extract_text( | |
| file.name, | |
| laparams=LAParams( | |
| line_margin=0.5, | |
| word_margin=0.1, | |
| char_margin=2.0, | |
| all_texts=True | |
| ) | |
| ) | |
| except: | |
| text = "" | |
| if not text.strip(): | |
| text = extract_pdf_text_with_ocr(file.name) | |
| if text: | |
| words = text.split() | |
| lines = text.split('\n') | |
| content += f"\n3. Text Analysis:\n" | |
| content += f"- Total Words: {len(words):,}\n" | |
| content += f"- Unique Words: {len(set(words)):,}\n" | |
| content += f"- Total Lines: {len(lines):,}\n" | |
| content += f"\n4. Content Preview:\n" | |
| preview_length = min(2000, len(text)) | |
| content += f"--- First {preview_length} characters ---\n" | |
| content += text[:preview_length] | |
| if len(text) > preview_length: | |
| content += f"\n... (Showing partial content of {len(text):,} characters)\n" | |
| else: | |
| content += "\nโ ๏ธ Text extraction failed" | |
| return content, "pdf" | |
| except Exception as e: | |
| return f"Error reading PDF file: {str(e)}", "error" | |
| # CSV file processing | |
| elif file_ext == '.csv': | |
| encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1'] | |
| for encoding in encodings: | |
| try: | |
| df = pd.read_csv(file.name, encoding=encoding) | |
| content = f"๐ CSV File Analysis:\n\n" | |
| content += f"1. Basic Information:\n" | |
| content += f"- Total Rows: {len(df):,}\n" | |
| content += f"- Total Columns: {len(df.columns)}\n" | |
| content += f"- Memory Usage: {df.memory_usage(deep=True).sum() / 1024 / 1024:.2f} MB\n\n" | |
| content += f"2. Column Information:\n" | |
| for col in df.columns: | |
| content += f"- {col} ({df[col].dtype})\n" | |
| content += f"\n3. Data Preview:\n" | |
| content += df.head(5).to_markdown(index=False) | |
| content += f"\n\n4. Missing Values:\n" | |
| null_counts = df.isnull().sum() | |
| for col, count in null_counts[null_counts > 0].items(): | |
| content += f"- {col}: {count:,} ({count/len(df)*100:.1f}%)\n" | |
| return content, "csv" | |
| except UnicodeDecodeError: | |
| continue | |
| raise UnicodeDecodeError(f"Unable to read file with supported encodings ({', '.join(encodings)})") | |
| # Text file processing | |
| else: | |
| encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1'] | |
| for encoding in encodings: | |
| try: | |
| with open(file.name, 'r', encoding=encoding) as f: | |
| content = f.read() | |
| lines = content.split('\n') | |
| total_lines = len(lines) | |
| non_empty_lines = len([line for line in lines if line.strip()]) | |
| is_code = any(keyword in content.lower() for keyword in ['def ', 'class ', 'import ', 'function']) | |
| analysis = f"\n๐ File Analysis:\n" | |
| if is_code: | |
| functions = len([line for line in lines if 'def ' in line]) | |
| classes = len([line for line in lines if 'class ' in line]) | |
| imports = len([line for line in lines if 'import ' in line or 'from ' in line]) | |
| analysis += f"- File Type: Code\n" | |
| analysis += f"- Total Lines: {total_lines:,}\n" | |
| analysis += f"- Functions: {functions}\n" | |
| analysis += f"- Classes: {classes}\n" | |
| analysis += f"- Import Statements: {imports}\n" | |
| else: | |
| words = len(content.split()) | |
| chars = len(content) | |
| analysis += f"- File Type: Text\n" | |
| analysis += f"- Total Lines: {total_lines:,}\n" | |
| analysis += f"- Non-empty Lines: {non_empty_lines:,}\n" | |
| analysis += f"- Word Count: {words:,}\n" | |
| analysis += f"- Character Count: {chars:,}\n" | |
| return content + analysis, "text" | |
| except UnicodeDecodeError: | |
| continue | |
| raise UnicodeDecodeError(f"Unable to read file with supported encodings ({', '.join(encodings)})") | |
| except Exception as e: | |
| return f"Error reading file: {str(e)}", "error" | |
| CSS = """ | |
| /* 3D ์คํ์ผ CSS */ | |
| :root { | |
| --primary-color: #2196f3; | |
| --secondary-color: #1976d2; | |
| --background-color: #f0f2f5; | |
| --card-background: #ffffff; | |
| --text-color: #333333; | |
| --shadow-color: rgba(0, 0, 0, 0.1); | |
| } | |
| body { | |
| background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); | |
| min-height: 100vh; | |
| font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; | |
| } | |
| .container { | |
| transform-style: preserve-3d; | |
| perspective: 1000px; | |
| } | |
| .chatbot { | |
| background: var(--card-background); | |
| border-radius: 20px; | |
| box-shadow: | |
| 0 10px 20px var(--shadow-color), | |
| 0 6px 6px var(--shadow-color); | |
| transform: translateZ(0); | |
| transition: transform 0.3s ease; | |
| backdrop-filter: blur(10px); | |
| } | |
| .chatbot:hover { | |
| transform: translateZ(10px); | |
| } | |
| /* ๋ฉ์์ง ์ ๋ ฅ ์์ญ */ | |
| .input-area { | |
| background: var(--card-background); | |
| border-radius: 15px; | |
| padding: 15px; | |
| margin-top: 20px; | |
| box-shadow: | |
| 0 5px 15px var(--shadow-color), | |
| 0 3px 3px var(--shadow-color); | |
| transform: translateZ(0); | |
| transition: all 0.3s ease; | |
| display: flex; | |
| align-items: center; | |
| gap: 10px; | |
| } | |
| .input-area:hover { | |
| transform: translateZ(5px); | |
| } | |
| /* ๋ฒํผ ์คํ์ผ */ | |
| .custom-button { | |
| background: linear-gradient(145deg, var(--primary-color), var(--secondary-color)); | |
| color: white; | |
| border: none; | |
| border-radius: 10px; | |
| padding: 10px 20px; | |
| font-weight: 600; | |
| cursor: pointer; | |
| transform: translateZ(0); | |
| transition: all 0.3s ease; | |
| box-shadow: | |
| 0 4px 6px var(--shadow-color), | |
| 0 1px 3px var(--shadow-color); | |
| } | |
| .custom-button:hover { | |
| transform: translateZ(5px) translateY(-2px); | |
| box-shadow: | |
| 0 7px 14px var(--shadow-color), | |
| 0 3px 6px var(--shadow-color); | |
| } | |
| /* ํ์ผ ์ ๋ก๋ ๋ฒํผ */ | |
| .file-upload-icon { | |
| background: linear-gradient(145deg, #64b5f6, #42a5f5); | |
| color: white; | |
| border-radius: 8px; | |
| font-size: 2em; | |
| cursor: pointer; | |
| display: flex; | |
| align-items: center; | |
| justify-content: center; | |
| height: 70px; | |
| width: 70px; | |
| transition: all 0.3s ease; | |
| box-shadow: 0 2px 5px rgba(0,0,0,0.1); | |
| } | |
| .file-upload-icon:hover { | |
| transform: translateY(-2px); | |
| box-shadow: 0 4px 8px rgba(0,0,0,0.2); | |
| } | |
| /* ํ์ผ ์ ๋ก๋ ๋ฒํผ ๋ด๋ถ ์์ ์คํ์ผ๋ง */ | |
| .file-upload-icon > .wrap { | |
| display: flex !important; | |
| align-items: center; | |
| justify-content: center; | |
| width: 100%; | |
| height: 100%; | |
| } | |
| .file-upload-icon > .wrap > p { | |
| display: none !important; | |
| } | |
| .file-upload-icon > .wrap::before { | |
| content: "๐"; | |
| font-size: 2em; | |
| display: block; | |
| } | |
| /* ๋ฉ์์ง ์คํ์ผ */ | |
| .message { | |
| background: var(--card-background); | |
| border-radius: 15px; | |
| padding: 15px; | |
| margin: 10px 0; | |
| box-shadow: | |
| 0 4px 6px var(--shadow-color), | |
| 0 1px 3px var(--shadow-color); | |
| transform: translateZ(0); | |
| transition: all 0.3s ease; | |
| } | |
| .message:hover { | |
| transform: translateZ(5px); | |
| } | |
| .chat-container { | |
| height: 600px !important; | |
| margin-bottom: 10px; | |
| } | |
| .input-container { | |
| height: 70px !important; | |
| display: flex; | |
| align-items: center; | |
| gap: 10px; | |
| margin-top: 5px; | |
| } | |
| .input-textbox { | |
| height: 70px !important; | |
| border-radius: 8px !important; | |
| font-size: 1.1em !important; | |
| padding: 10px 15px !important; | |
| display: flex !important; | |
| align-items: flex-start !important; /* ํ ์คํธ ์ ๋ ฅ ์์น๋ฅผ ์๋ก ์กฐ์ */ | |
| } | |
| .input-textbox textarea { | |
| padding-top: 5px !important; /* ํ ์คํธ ์๋จ ์ฌ๋ฐฑ ์กฐ์ */ | |
| } | |
| .send-button { | |
| height: 70px !important; | |
| min-width: 70px !important; | |
| font-size: 1.1em !important; | |
| } | |
| /* ์ค์ ํจ๋ ๊ธฐ๋ณธ ์คํ์ผ */ | |
| .settings-panel { | |
| padding: 20px; | |
| margin-top: 20px; | |
| } | |
| """ | |
| # GPU ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ ํจ์ ์์ | |
| def clear_cuda_memory(): | |
| if hasattr(torch.cuda, 'empty_cache'): | |
| with torch.cuda.device('cuda'): | |
| torch.cuda.empty_cache() | |
| # ๋ชจ๋ธ ๋ก๋ ํจ์ ์์ | |
| def load_model(): | |
| try: | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_ID, | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto", | |
| ) | |
| return model | |
| except Exception as e: | |
| print(f"๋ชจ๋ธ ๋ก๋ ์ค๋ฅ: {str(e)}") | |
| raise | |
| def stream_chat(message: str, history: list, uploaded_file, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float): | |
| global model, current_file_context | |
| try: | |
| if model is None: | |
| model = load_model() | |
| print(f'message is - {message}') | |
| print(f'history is - {history}') | |
| # ํ์ผ ์ ๋ก๋ ์ฒ๋ฆฌ | |
| file_context = "" | |
| if uploaded_file and message == "ํ์ผ์ ๋ถ์ํ๊ณ ์์ต๋๋ค...": | |
| try: | |
| content, file_type = read_uploaded_file(uploaded_file) | |
| if content: | |
| file_analysis = analyze_file_content(content, file_type) | |
| file_context = f"\n\n๐ ํ์ผ ๋ถ์ ๊ฒฐ๊ณผ:\n{file_analysis}\n\nํ์ผ ๋ด์ฉ:\n```\n{content}\n```" | |
| current_file_context = file_context # ํ์ผ ์ปจํ ์คํธ ์ ์ฅ | |
| message = "์ ๋ก๋๋ ํ์ผ์ ๋ถ์ํด์ฃผ์ธ์." | |
| except Exception as e: | |
| print(f"ํ์ผ ๋ถ์ ์ค๋ฅ: {str(e)}") | |
| file_context = f"\n\nโ ํ์ผ ๋ถ์ ์ค ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}" | |
| elif current_file_context: # ์ ์ฅ๋ ํ์ผ ์ปจํ ์คํธ๊ฐ ์์ผ๋ฉด ์ฌ์ฉ | |
| file_context = current_file_context | |
| # ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋ ๋ชจ๋ํฐ๋ง | |
| if torch.cuda.is_available(): | |
| print(f"CUDA ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋: {torch.cuda.memory_allocated() / 1024**2:.2f} MB") | |
| # ๋ํ ํ์คํ ๋ฆฌ๊ฐ ๋๋ฌด ๊ธธ๋ฉด ์๋ผ๋ด๊ธฐ | |
| max_history_length = 10 # ์ต๋ ํ์คํ ๋ฆฌ ๊ธธ์ด ์ค์ | |
| if len(history) > max_history_length: | |
| history = history[-max_history_length:] | |
| # ๊ด๋ จ ์ปจํ ์คํธ ์ฐพ๊ธฐ | |
| try: | |
| relevant_contexts = find_relevant_context(message) | |
| wiki_context = "\n\n๊ด๋ จ ์ํคํผ๋์ ์ ๋ณด:\n" | |
| for ctx in relevant_contexts: | |
| wiki_context += f"Q: {ctx['question']}\nA: {ctx['answer']}\n์ ์ฌ๋: {ctx['similarity']:.3f}\n\n" | |
| except Exception as e: | |
| print(f"์ปจํ ์คํธ ๊ฒ์ ์ค๋ฅ: {str(e)}") | |
| wiki_context = "" | |
| # ๋ํ ํ์คํ ๋ฆฌ ๊ตฌ์ฑ | |
| conversation = [] | |
| for prompt, answer in history: | |
| conversation.extend([ | |
| {"role": "user", "content": prompt}, | |
| {"role": "assistant", "content": answer} | |
| ]) | |
| # ์ต์ข ํ๋กฌํํธ ๊ตฌ์ฑ | |
| final_message = file_context + wiki_context + "\nํ์ฌ ์ง๋ฌธ: " + message | |
| conversation.append({"role": "user", "content": final_message}) | |
| # ํ ํฐ ์ ์ ํ | |
| input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) | |
| max_length = 4096 # ๋๋ ๋ชจ๋ธ์ ์ต๋ ์ปจํ ์คํธ ๊ธธ์ด | |
| if len(input_ids.split()) > max_length: | |
| # ์ปจํ ์คํธ๊ฐ ๋๋ฌด ๊ธธ๋ฉด ์๋ผ๋ด๊ธฐ | |
| input_ids = " ".join(input_ids.split()[-max_length:]) | |
| inputs = tokenizer(input_ids, return_tensors="pt").to("cuda") | |
| # ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋ ์ฒดํฌ | |
| if torch.cuda.is_available(): | |
| print(f"์ ๋ ฅ ํ ์ ์์ฑ ํ CUDA ๋ฉ๋ชจ๋ฆฌ: {torch.cuda.memory_allocated() / 1024**2:.2f} MB") | |
| streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| inputs, | |
| streamer=streamer, | |
| top_k=top_k, | |
| top_p=top_p, | |
| repetition_penalty=penalty, | |
| max_new_tokens=min(max_new_tokens, 2048), # ์ต๋ ํ ํฐ ์ ์ ํ | |
| do_sample=True, | |
| temperature=temperature, | |
| eos_token_id=[255001], | |
| ) | |
| # ์์ฑ ์์ ์ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ | |
| clear_cuda_memory() | |
| thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| yield "", history + [[message, buffer]] | |
| # ์์ฑ ์๋ฃ ํ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ | |
| clear_cuda_memory() | |
| except Exception as e: | |
| error_message = f"์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}" | |
| print(f"Stream chat ์ค๋ฅ: {error_message}") | |
| # ์ค๋ฅ ๋ฐ์ ์์๋ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ | |
| clear_cuda_memory() | |
| yield "", history + [[message, error_message]] | |
| def create_demo(): | |
| with gr.Blocks(css=CSS) as demo: | |
| with gr.Column(elem_classes="markdown-style"): | |
| gr.Markdown(""" | |
| # ๐ค RAGOndevice | |
| #### ๐ RAG: Upload and Analyze Files (TXT, CSV, PDF, Parquet files) | |
| Upload your files for data analysis and learning | |
| """) | |
| chatbot = gr.Chatbot( | |
| value=[], | |
| height=600, | |
| label="GiniGEN AI Assistant", | |
| elem_classes="chat-container" | |
| ) | |
| with gr.Row(elem_classes="input-container"): | |
| with gr.Column(scale=1, min_width=70): | |
| file_upload = gr.File( | |
| type="filepath", | |
| elem_classes="file-upload-icon", | |
| scale=1, | |
| container=True, | |
| interactive=True, | |
| show_label=False | |
| ) | |
| with gr.Column(scale=3): | |
| msg = gr.Textbox( | |
| show_label=False, | |
| placeholder="Type your message here... ๐ญ", | |
| container=False, | |
| elem_classes="input-textbox", | |
| scale=1 | |
| ) | |
| with gr.Column(scale=1, min_width=70): | |
| send = gr.Button( | |
| "Send", | |
| elem_classes="send-button custom-button", | |
| scale=1 | |
| ) | |
| with gr.Column(scale=1, min_width=70): | |
| clear = gr.Button( | |
| "Clear", | |
| elem_classes="clear-button custom-button", | |
| scale=1 | |
| ) | |
| with gr.Accordion("๐ฎ Advanced Settings", open=False): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| temperature = gr.Slider( | |
| minimum=0, maximum=1, step=0.1, value=0.8, | |
| label="Creativity Level ๐จ" | |
| ) | |
| max_new_tokens = gr.Slider( | |
| minimum=128, maximum=8000, step=1, value=4000, | |
| label="Maximum Token Count ๐" | |
| ) | |
| with gr.Column(scale=1): | |
| top_p = gr.Slider( | |
| minimum=0.0, maximum=1.0, step=0.1, value=0.8, | |
| label="Diversity Control ๐ฏ" | |
| ) | |
| top_k = gr.Slider( | |
| minimum=1, maximum=20, step=1, value=20, | |
| label="Selection Range ๐" | |
| ) | |
| penalty = gr.Slider( | |
| minimum=0.0, maximum=2.0, step=0.1, value=1.0, | |
| label="Repetition Penalty ๐" | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| ["Please analyze this code and suggest improvements:\ndef fibonacci(n):\n if n <= 1: return n\n return fibonacci(n-1) + fibonacci(n-2)"], | |
| ["Please analyze this data and provide insights:\nAnnual Revenue (Million)\n2019: 1200\n2020: 980\n2021: 1450\n2022: 2100\n2023: 1890"], | |
| ["Please solve this math problem step by step: 'When a circle's area is twice that of its inscribed square, find the relationship between the circle's radius and the square's side length.'"], | |
| ["Please analyze this marketing campaign's ROI and suggest improvements:\nTotal Cost: $50,000\nReach: 1M users\nClick Rate: 2.3%\nConversion Rate: 0.8%\nAverage Purchase: $35"], | |
| ], | |
| inputs=msg | |
| ) | |
| def clear_conversation(): | |
| global current_file_context | |
| current_file_context = None | |
| return [], None, "Start a new conversation..." | |
| # Event bindings | |
| msg.submit( | |
| stream_chat, | |
| inputs=[msg, chatbot, file_upload, temperature, max_new_tokens, top_p, top_k, penalty], | |
| outputs=[msg, chatbot] | |
| ) | |
| send.click( | |
| stream_chat, | |
| inputs=[msg, chatbot, file_upload, temperature, max_new_tokens, top_p, top_k, penalty], | |
| outputs=[msg, chatbot] | |
| ) | |
| file_upload.change( | |
| fn=init_msg, | |
| outputs=msg, | |
| queue=False | |
| ).then( | |
| fn=stream_chat, | |
| inputs=[msg, chatbot, file_upload, temperature, max_new_tokens, top_p, top_k, penalty], | |
| outputs=[msg, chatbot], | |
| queue=True | |
| ) | |
| # Clear button event binding | |
| clear.click( | |
| fn=clear_conversation, | |
| outputs=[chatbot, file_upload, msg], | |
| queue=False | |
| ) | |
| return demo | |
| if __name__ == "__main__": | |
| demo = create_demo() | |
| demo.launch() |