Spaces:
VIDraft
/
Running on Zero

openfree commited on
Commit
d6115aa
·
verified ·
1 Parent(s): 4f35135

Upload 3 files

Browse files
Files changed (3) hide show
  1. app (34).py +246 -0
  2. apt.txt +2 -0
  3. requirements (15).txt +9 -0
app (34).py ADDED
@@ -0,0 +1,246 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import time
3
+ import gc
4
+ import threading
5
+ from itertools import islice
6
+ from datetime import datetime
7
+ import gradio as gr
8
+ import torch
9
+ from transformers import pipeline, TextIteratorStreamer
10
+ from duckduckgo_search import DDGS
11
+ import spaces # Import spaces early to enable ZeroGPU support
12
+
13
+ # Optional: Disable GPU visibility if you wish to force CPU usage
14
+ # os.environ["CUDA_VISIBLE_DEVICES"] = ""
15
+
16
+ # ------------------------------
17
+ # Global Cancellation Event
18
+ # ------------------------------
19
+ cancel_event = threading.Event()
20
+
21
+ # ------------------------------
22
+ # Torch-Compatible Model Definitions with Adjusted Descriptions
23
+ # ------------------------------
24
+ MODELS = {
25
+
26
+ "Qwen3-8B": {"repo_id": "Qwen/Qwen3-8B", "description": "Qwen3-8B"},
27
+ "Qwen3-4B": {"repo_id": "Qwen/Qwen3-4B", "description": "Qwen3-4B"},
28
+ "Qwen3-1.7B": {"repo_id": "Qwen/Qwen3-1,7B", "description": "Qwen3-1.7B"},
29
+ "Qwen3-0.6B": {"repo_id": "Qwen/Qwen3-0.6B", "description": "Qwen3-0.6B"},
30
+ "Gemma-3-4B-IT": {"repo_id": "unsloth/gemma-3-4b-it", "description": "Gemma-3-4B-IT"},
31
+ "SmolLM2-135M-Instruct-TaiwanChat": {"repo_id": "Luigi/SmolLM2-135M-Instruct-TaiwanChat", "description": "SmolLM2‑135M Instruct fine-tuned on TaiwanChat"},
32
+ "SmolLM2-135M-Instruct": {"repo_id": "HuggingFaceTB/SmolLM2-135M-Instruct", "description": "Original SmolLM2‑135M Instruct"},
33
+ "SmolLM2-360M-Instruct-TaiwanChat": {"repo_id": "Luigi/SmolLM2-360M-Instruct-TaiwanChat", "description": "SmolLM2‑360M Instruct fine-tuned on TaiwanChat"},
34
+ "Llama-3.2-Taiwan-3B-Instruct": {"repo_id": "lianghsun/Llama-3.2-Taiwan-3B-Instruct", "description": "Llama-3.2-Taiwan-3B-Instruct"},
35
+ "MiniCPM3-4B": {"repo_id": "openbmb/MiniCPM3-4B", "description": "MiniCPM3-4B"},
36
+ "Qwen2.5-3B-Instruct": {"repo_id": "Qwen/Qwen2.5-3B-Instruct", "description": "Qwen2.5-3B-Instruct"},
37
+ "Qwen2.5-7B-Instruct": {"repo_id": "Qwen/Qwen2.5-7B-Instruct", "description": "Qwen2.5-7B-Instruct"},
38
+ "Phi-4-mini-Instruct": {"repo_id": "unsloth/Phi-4-mini-instruct", "description": "Phi-4-mini-Instruct"},
39
+ "Meta-Llama-3.1-8B-Instruct": {"repo_id": "MaziyarPanahi/Meta-Llama-3.1-8B-Instruct", "description": "Meta-Llama-3.1-8B-Instruct"},
40
+ "DeepSeek-R1-Distill-Llama-8B": {"repo_id": "unsloth/DeepSeek-R1-Distill-Llama-8B", "description": "DeepSeek-R1-Distill-Llama-8B"},
41
+ "Mistral-7B-Instruct-v0.3": {"repo_id": "MaziyarPanahi/Mistral-7B-Instruct-v0.3", "description": "Mistral-7B-Instruct-v0.3"},
42
+ "Qwen2.5-Coder-7B-Instruct": {"repo_id": "Qwen/Qwen2.5-Coder-7B-Instruct", "description": "Qwen2.5-Coder-7B-Instruct"},
43
+ }
44
+
45
+ # Global cache for pipelines to avoid re-loading.
46
+ PIPELINES = {}
47
+
48
+ def load_pipeline(model_name):
49
+ """
50
+ Load and cache a transformers pipeline for text generation.
51
+ Tries bfloat16, falls back to float16 or float32 if unsupported.
52
+ """
53
+ global PIPELINES
54
+ if model_name in PIPELINES:
55
+ return PIPELINES[model_name]
56
+ repo = MODELS[model_name]["repo_id"]
57
+ for dtype in (torch.bfloat16, torch.float16, torch.float32):
58
+ try:
59
+ pipe = pipeline(
60
+ task="text-generation",
61
+ model=repo,
62
+ tokenizer=repo,
63
+ trust_remote_code=True,
64
+ torch_dtype=dtype,
65
+ device_map="auto"
66
+ )
67
+ PIPELINES[model_name] = pipe
68
+ return pipe
69
+ except Exception:
70
+ continue
71
+ # Final fallback
72
+ pipe = pipeline(
73
+ task="text-generation",
74
+ model=repo,
75
+ tokenizer=repo,
76
+ trust_remote_code=True,
77
+ device_map="auto"
78
+ )
79
+ PIPELINES[model_name] = pipe
80
+ return pipe
81
+
82
+
83
+ def retrieve_context(query, max_results=6, max_chars=600):
84
+ """
85
+ Retrieve search snippets from DuckDuckGo (runs in background).
86
+ Returns a list of result strings.
87
+ """
88
+ try:
89
+ with DDGS() as ddgs:
90
+ return [f"{i+1}. {r.get('title','No Title')} - {r.get('body','')[:max_chars]}"
91
+ for i, r in enumerate(islice(ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y"), max_results))]
92
+ except Exception:
93
+ return []
94
+
95
+
96
+ def format_conversation(history, system_prompt):
97
+ """
98
+ Flatten chat history and system prompt into a single string.
99
+ """
100
+ prompt = system_prompt.strip() + "\n"
101
+ for msg in history:
102
+ if msg['role'] == 'user':
103
+ prompt += "User: " + msg['content'].strip() + "\n"
104
+ elif msg['role'] == 'assistant':
105
+ prompt += "Assistant: " + msg['content'].strip() + "\n"
106
+ else:
107
+ prompt += msg['content'].strip() + "\n"
108
+ if not prompt.strip().endswith("Assistant:"):
109
+ prompt += "Assistant: "
110
+ return prompt
111
+
112
+ @spaces.GPU(duration=60)
113
+ def chat_response(user_msg, chat_history, system_prompt,
114
+ enable_search, max_results, max_chars,
115
+ model_name, max_tokens, temperature,
116
+ top_k, top_p, repeat_penalty):
117
+ """
118
+ Generates streaming chat responses, optionally with background web search.
119
+ """
120
+ cancel_event.clear()
121
+ history = list(chat_history or [])
122
+ history.append({'role': 'user', 'content': user_msg})
123
+
124
+ # Launch web search if enabled
125
+ debug = ''
126
+ search_results = []
127
+ if enable_search:
128
+ debug = 'Search task started.'
129
+ thread_search = threading.Thread(
130
+ target=lambda: search_results.extend(
131
+ retrieve_context(user_msg, int(max_results), int(max_chars))
132
+ )
133
+ )
134
+ thread_search.daemon = True
135
+ thread_search.start()
136
+ else:
137
+ debug = 'Web search disabled.'
138
+
139
+ # Prepare assistant placeholder
140
+ history.append({'role': 'assistant', 'content': ''})
141
+
142
+ try:
143
+
144
+ # merge any fetched search results into the system prompt
145
+ if search_results:
146
+ enriched = system_prompt.strip() + "\n\nRelevant context:\n" + "\n".join(search_results)
147
+ else:
148
+ enriched = system_prompt
149
+
150
+ # wait up to 1s for snippets, then replace debug with them
151
+ if enable_search:
152
+ thread_search.join(timeout=1.0)
153
+ if search_results:
154
+ debug = "### Search results merged into prompt\n\n" + "\n".join(
155
+ f"- {r}" for r in search_results
156
+ )
157
+ else:
158
+ debug = "*No web search results found.*"
159
+
160
+ # merge fetched snippets into the system prompt
161
+ if search_results:
162
+ enriched = system_prompt.strip() + "\n\nRelevant context:\n" + "\n".join(search_results)
163
+ else:
164
+ enriched = system_prompt
165
+
166
+ prompt = format_conversation(history, enriched)
167
+
168
+ pipe = load_pipeline(model_name)
169
+ streamer = TextIteratorStreamer(pipe.tokenizer,
170
+ skip_prompt=True,
171
+ skip_special_tokens=True)
172
+ gen_thread = threading.Thread(
173
+ target=pipe,
174
+ args=(prompt,),
175
+ kwargs={
176
+ 'max_new_tokens': max_tokens,
177
+ 'temperature': temperature,
178
+ 'top_k': top_k,
179
+ 'top_p': top_p,
180
+ 'repetition_penalty': repeat_penalty,
181
+ 'streamer': streamer,
182
+ 'return_full_text': False
183
+ }
184
+ )
185
+ gen_thread.start()
186
+
187
+ assistant_text = ''
188
+ for chunk in streamer:
189
+ if cancel_event.is_set():
190
+ break
191
+ assistant_text += chunk
192
+ history[-1]['content'] = assistant_text
193
+ # Show debug only once
194
+ yield history, debug
195
+ gen_thread.join()
196
+ except Exception as e:
197
+ history[-1]['content'] = f"Error: {e}"
198
+ yield history, debug
199
+ finally:
200
+ gc.collect()
201
+
202
+
203
+ def cancel_generation():
204
+ cancel_event.set()
205
+ return 'Generation cancelled.'
206
+
207
+
208
+ def update_default_prompt(enable_search):
209
+ today = datetime.now().strftime('%Y-%m-%d')
210
+ return f"You are a helpful assistant. Today is {today}."
211
+
212
+ # ------------------------------
213
+ # Gradio UI
214
+ # ------------------------------
215
+ with gr.Blocks(title="LLM Inference with ZeroGPU") as demo:
216
+ gr.Markdown("## 🧠 ZeroGPU LLM Inference with Web Search")
217
+ gr.Markdown("Interact with the model. Select parameters and chat below.")
218
+ with gr.Row():
219
+ with gr.Column(scale=3):
220
+ model_dd = gr.Dropdown(label="Select Model", choices=list(MODELS.keys()), value=list(MODELS.keys())[0])
221
+ search_chk = gr.Checkbox(label="Enable Web Search", value=True)
222
+ sys_prompt = gr.Textbox(label="System Prompt", lines=3, value=update_default_prompt(search_chk.value))
223
+ gr.Markdown("### Generation Parameters")
224
+ max_tok = gr.Slider(64, 1024, value=512, step=32, label="Max Tokens")
225
+ temp = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
226
+ k = gr.Slider(1, 100, value=40, step=1, label="Top-K")
227
+ p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P")
228
+ rp = gr.Slider(1.0, 2.0, value=1.1, step=0.1, label="Repetition Penalty")
229
+ gr.Markdown("### Web Search Settings")
230
+ mr = gr.Number(value=6, precision=0, label="Max Results")
231
+ mc = gr.Number(value=600, precision=0, label="Max Chars/Result")
232
+ clr = gr.Button("Clear Chat")
233
+ cnl = gr.Button("Cancel Generation")
234
+ with gr.Column(scale=7):
235
+ chat = gr.Chatbot(type="messages")
236
+ txt = gr.Textbox(placeholder="Type your message and press Enter...")
237
+ dbg = gr.Markdown()
238
+
239
+ search_chk.change(fn=update_default_prompt, inputs=search_chk, outputs=sys_prompt)
240
+ clr.click(fn=lambda: ([], "", ""), outputs=[chat, txt, dbg])
241
+ cnl.click(fn=cancel_generation, outputs=dbg)
242
+ txt.submit(fn=chat_response,
243
+ inputs=[txt, chat, sys_prompt, search_chk, mr, mc,
244
+ model_dd, max_tok, temp, k, p, rp],
245
+ outputs=[chat, dbg])
246
+ demo.launch()
apt.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ rustc
2
+ cargo
requirements (15).txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ wheel
2
+ streamlit
3
+ duckduckgo_search
4
+ gradio>=4.0.0
5
+ torch==2.4.0
6
+ transformers
7
+ spaces
8
+ sentencepiece
9
+ accelerate