Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -17,7 +17,7 @@ import numpy as np
|
|
| 17 |
from PIL import Image
|
| 18 |
import edge_tts
|
| 19 |
import trimesh
|
| 20 |
-
import soundfile as sf #
|
| 21 |
|
| 22 |
import supervision as sv
|
| 23 |
from ultralytics import YOLO as YOLODetector
|
|
@@ -46,6 +46,10 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
| 46 |
return seed
|
| 47 |
|
| 48 |
def glb_to_data_url(glb_path: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
with open(glb_path, "rb") as f:
|
| 50 |
data = f.read()
|
| 51 |
b64_data = base64.b64encode(data).decode("utf-8")
|
|
@@ -58,6 +62,7 @@ class Model:
|
|
| 58 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 59 |
self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16)
|
| 60 |
self.pipe.to(self.device)
|
|
|
|
| 61 |
if torch.cuda.is_available():
|
| 62 |
try:
|
| 63 |
self.pipe.text_encoder = self.pipe.text_encoder.half()
|
|
@@ -66,6 +71,7 @@ class Model:
|
|
| 66 |
|
| 67 |
self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16)
|
| 68 |
self.pipe_img.to(self.device)
|
|
|
|
| 69 |
if torch.cuda.is_available():
|
| 70 |
text_encoder_img = getattr(self.pipe_img, "text_encoder", None)
|
| 71 |
if text_encoder_img is not None:
|
|
@@ -73,6 +79,7 @@ class Model:
|
|
| 73 |
|
| 74 |
def to_glb(self, ply_path: str) -> str:
|
| 75 |
mesh = trimesh.load(ply_path)
|
|
|
|
| 76 |
rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0])
|
| 77 |
mesh.apply_transform(rot)
|
| 78 |
rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
|
|
@@ -107,7 +114,7 @@ class Model:
|
|
| 107 |
export_to_ply(images[0], ply_path.name)
|
| 108 |
return self.to_glb(ply_path.name)
|
| 109 |
|
| 110 |
-
#
|
| 111 |
|
| 112 |
from typing import Any, Optional
|
| 113 |
from smolagents.tools import Tool
|
|
@@ -115,20 +122,25 @@ import duckduckgo_search
|
|
| 115 |
|
| 116 |
class DuckDuckGoSearchTool(Tool):
|
| 117 |
name = "web_search"
|
| 118 |
-
description = "Performs a duckduckgo web search
|
| 119 |
-
inputs = {'query': {'type': 'string', 'description': 'The search query.'}}
|
| 120 |
output_type = "string"
|
| 121 |
|
| 122 |
def __init__(self, max_results=10, **kwargs):
|
| 123 |
super().__init__()
|
| 124 |
self.max_results = max_results
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
self.ddgs = DDGS(**kwargs)
|
| 127 |
|
| 128 |
def forward(self, query: str) -> str:
|
| 129 |
results = self.ddgs.text(query, max_results=self.max_results)
|
| 130 |
if len(results) == 0:
|
| 131 |
-
raise Exception("No results found! Try a less restrictive query.")
|
| 132 |
postprocessed_results = [
|
| 133 |
f"[{result['title']}]({result['href']})\n{result['body']}" for result in results
|
| 134 |
]
|
|
@@ -136,28 +148,44 @@ class DuckDuckGoSearchTool(Tool):
|
|
| 136 |
|
| 137 |
class VisitWebpageTool(Tool):
|
| 138 |
name = "visit_webpage"
|
| 139 |
-
description = "Visits a webpage and
|
| 140 |
-
inputs = {'url': {'type': 'string', 'description': 'The
|
| 141 |
output_type = "string"
|
| 142 |
|
| 143 |
def __init__(self, *args, **kwargs):
|
| 144 |
self.is_initialized = False
|
| 145 |
|
| 146 |
def forward(self, url: str) -> str:
|
| 147 |
-
import requests
|
| 148 |
-
from markdownify import markdownify
|
| 149 |
-
from smolagents.utils import truncate_content
|
| 150 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
response = requests.get(url, timeout=20)
|
| 152 |
-
response.raise_for_status()
|
|
|
|
|
|
|
| 153 |
markdown_content = markdownify(response.text).strip()
|
|
|
|
|
|
|
| 154 |
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
|
|
|
|
| 155 |
return truncate_content(markdown_content, 10000)
|
| 156 |
-
except requests.exceptions.Timeout:
|
| 157 |
-
return "The request timed out."
|
| 158 |
-
except requests.exceptions.RequestException as e:
|
| 159 |
-
return f"Error fetching webpage: {str(e)}"
|
| 160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
# rAgent Reasoning using Llama mode OpenAI
|
| 162 |
|
| 163 |
from openai import OpenAI
|
|
@@ -169,15 +197,22 @@ ragent_client = OpenAI(
|
|
| 169 |
)
|
| 170 |
|
| 171 |
SYSTEM_PROMPT = """
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
|
|
|
|
|
|
|
|
|
| 177 |
"""
|
| 178 |
|
| 179 |
def ragent_reasoning(prompt: str, history: list[dict], max_tokens: int = 2048, temperature: float = 0.7, top_p: float = 0.95):
|
|
|
|
|
|
|
|
|
|
| 180 |
messages = [{"role": "system", "content": SYSTEM_PROMPT}]
|
|
|
|
| 181 |
for msg in history:
|
| 182 |
if msg.get("role") == "user":
|
| 183 |
messages.append({"role": "user", "content": msg["content"]})
|
|
@@ -186,23 +221,76 @@ def ragent_reasoning(prompt: str, history: list[dict], max_tokens: int = 2048, t
|
|
| 186 |
messages.append({"role": "user", "content": prompt})
|
| 187 |
response = ""
|
| 188 |
stream = ragent_client.chat.completions.create(
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
)
|
| 196 |
for message in stream:
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
-
|
|
|
|
|
|
|
| 202 |
|
| 203 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 204 |
|
| 205 |
-
#
|
|
|
|
|
|
|
| 206 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
| 207 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 208 |
model = AutoModelForCausalLM.from_pretrained(
|
|
@@ -212,8 +300,14 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 212 |
)
|
| 213 |
model.eval()
|
| 214 |
|
| 215 |
-
#
|
| 216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 218 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 219 |
MODEL_ID,
|
|
@@ -221,58 +315,55 @@ model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
| 221 |
torch_dtype=torch.float16
|
| 222 |
).to("cuda").eval()
|
| 223 |
|
| 224 |
-
#
|
| 225 |
-
phi4_model_path = "microsoft/Phi-4-multimodal-instruct"
|
| 226 |
-
phi4_processor = AutoProcessor.from_pretrained(phi4_model_path, trust_remote_code=True)
|
| 227 |
-
phi4_model = AutoModelForCausalLM.from_pretrained(
|
| 228 |
-
phi4_model_path,
|
| 229 |
-
device_map="auto",
|
| 230 |
-
torch_dtype="auto",
|
| 231 |
-
trust_remote_code=True,
|
| 232 |
-
_attn_implementation="eager",
|
| 233 |
-
)
|
| 234 |
-
phi4_model.eval()
|
| 235 |
-
|
| 236 |
-
# Stable Diffusion XL Pipeline
|
| 237 |
-
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH")
|
| 238 |
-
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 239 |
-
MODEL_ID_SD,
|
| 240 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 241 |
-
use_safetensors=True,
|
| 242 |
-
add_watermarker=False,
|
| 243 |
-
).to(device)
|
| 244 |
-
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
| 245 |
-
if torch.cuda.is_available():
|
| 246 |
-
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
|
| 247 |
-
|
| 248 |
-
# YOLO Object Detection
|
| 249 |
-
YOLO_MODEL_REPO = "strangerzonehf/Flux-Ultimate-LoRA-Collection"
|
| 250 |
-
YOLO_CHECKPOINT_NAME = "images/demo.pt"
|
| 251 |
-
yolo_model_path = hf_hub_download(repo_id=YOLO_MODEL_REPO, filename=YOLO_CHECKPOINT_NAME)
|
| 252 |
-
yolo_detector = YOLODetector(yolo_model_path)
|
| 253 |
-
|
| 254 |
-
# TTS Voices
|
| 255 |
-
TTS_VOICES = ["en-US-JennyNeural", "en-US-GuyNeural"]
|
| 256 |
-
|
| 257 |
-
MAX_MAX_NEW_TOKENS = 2048
|
| 258 |
-
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 259 |
-
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 260 |
-
|
| 261 |
-
# Utility Functions
|
| 262 |
|
| 263 |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
|
|
|
| 264 |
communicate = edge_tts.Communicate(text, voice)
|
| 265 |
await communicate.save(output_file)
|
| 266 |
return output_file
|
| 267 |
|
|
|
|
|
|
|
| 268 |
def clean_chat_history(chat_history):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
cleaned = []
|
| 270 |
for msg in chat_history:
|
| 271 |
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
|
| 272 |
cleaned.append(msg)
|
| 273 |
return cleaned
|
| 274 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
def save_image(img: Image.Image) -> str:
|
|
|
|
| 276 |
unique_name = str(uuid.uuid4()) + ".png"
|
| 277 |
img.save(unique_name)
|
| 278 |
return unique_name
|
|
@@ -292,8 +383,10 @@ def generate_image_fn(
|
|
| 292 |
num_images: int = 1,
|
| 293 |
progress=gr.Progress(track_tqdm=True),
|
| 294 |
):
|
|
|
|
| 295 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 296 |
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
| 297 |
options = {
|
| 298 |
"prompt": [prompt] * num_images,
|
| 299 |
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
|
@@ -306,12 +399,14 @@ def generate_image_fn(
|
|
| 306 |
}
|
| 307 |
if use_resolution_binning:
|
| 308 |
options["use_resolution_binning"] = True
|
|
|
|
| 309 |
images = []
|
| 310 |
-
|
|
|
|
| 311 |
batch_options = options.copy()
|
| 312 |
-
batch_options["prompt"] = options["prompt"][i:i+
|
| 313 |
-
if "negative_prompt" in batch_options and batch_options["negative_prompt"]:
|
| 314 |
-
batch_options["negative_prompt"] = options["negative_prompt"][i:i+
|
| 315 |
if device.type == "cuda":
|
| 316 |
with torch.autocast("cuda", dtype=torch.float16):
|
| 317 |
outputs = sd_pipe(**batch_options)
|
|
@@ -321,6 +416,8 @@ def generate_image_fn(
|
|
| 321 |
image_paths = [save_image(img) for img in images]
|
| 322 |
return image_paths, seed
|
| 323 |
|
|
|
|
|
|
|
| 324 |
@spaces.GPU(duration=120, enable_queue=True)
|
| 325 |
def generate_3d_fn(
|
| 326 |
prompt: str,
|
|
@@ -329,22 +426,36 @@ def generate_3d_fn(
|
|
| 329 |
num_steps: int = 64,
|
| 330 |
randomize_seed: bool = False,
|
| 331 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 333 |
model3d = Model()
|
| 334 |
glb_path = model3d.run_text(prompt, seed=seed, guidance_scale=guidance_scale, num_steps=num_steps)
|
| 335 |
return glb_path, seed
|
| 336 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
def detect_objects(image: np.ndarray):
|
|
|
|
| 338 |
results = yolo_detector(image, verbose=False)[0]
|
| 339 |
detections = sv.Detections.from_ultralytics(results).with_nms()
|
|
|
|
| 340 |
box_annotator = sv.BoxAnnotator()
|
| 341 |
label_annotator = sv.LabelAnnotator()
|
|
|
|
| 342 |
annotated_image = image.copy()
|
| 343 |
annotated_image = box_annotator.annotate(scene=annotated_image, detections=detections)
|
| 344 |
annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections)
|
|
|
|
| 345 |
return Image.fromarray(annotated_image)
|
| 346 |
|
| 347 |
-
# Chat Generation Function with @phi4
|
| 348 |
|
| 349 |
@spaces.GPU
|
| 350 |
def generate(
|
|
@@ -356,13 +467,23 @@ def generate(
|
|
| 356 |
top_k: int = 50,
|
| 357 |
repetition_penalty: float = 1.2,
|
| 358 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 359 |
text = input_dict["text"]
|
| 360 |
files = input_dict.get("files", [])
|
| 361 |
|
| 362 |
-
# --- 3D Generation ---
|
| 363 |
if text.strip().lower().startswith("@3d"):
|
| 364 |
prompt = text[len("@3d"):].strip()
|
| 365 |
-
yield "🌀
|
| 366 |
glb_path, used_seed = generate_3d_fn(
|
| 367 |
prompt=prompt,
|
| 368 |
seed=1,
|
|
@@ -370,31 +491,41 @@ def generate(
|
|
| 370 |
num_steps=64,
|
| 371 |
randomize_seed=True,
|
| 372 |
)
|
|
|
|
| 373 |
static_folder = os.path.join(os.getcwd(), "static")
|
| 374 |
if not os.path.exists(static_folder):
|
| 375 |
os.makedirs(static_folder)
|
| 376 |
new_filename = f"mesh_{uuid.uuid4()}.glb"
|
| 377 |
new_filepath = os.path.join(static_folder, new_filename)
|
| 378 |
shutil.copy(glb_path, new_filepath)
|
|
|
|
| 379 |
yield gr.File(new_filepath)
|
| 380 |
return
|
| 381 |
|
| 382 |
-
# --- Image Generation ---
|
| 383 |
if text.strip().lower().startswith("@image"):
|
| 384 |
prompt = text[len("@image"):].strip()
|
| 385 |
yield "🪧 Generating image..."
|
| 386 |
image_paths, used_seed = generate_image_fn(
|
| 387 |
prompt=prompt,
|
|
|
|
|
|
|
| 388 |
seed=1,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 389 |
randomize_seed=True,
|
|
|
|
| 390 |
num_images=1,
|
| 391 |
)
|
| 392 |
yield gr.Image(image_paths[0])
|
| 393 |
return
|
| 394 |
|
| 395 |
-
# --- Web Search/Visit ---
|
| 396 |
if text.strip().lower().startswith("@web"):
|
| 397 |
web_command = text[len("@web"):].strip()
|
|
|
|
| 398 |
if web_command.lower().startswith("visit"):
|
| 399 |
url = web_command[len("visit"):].strip()
|
| 400 |
yield "🌍 Visiting webpage..."
|
|
@@ -402,30 +533,36 @@ def generate(
|
|
| 402 |
content = visitor.forward(url)
|
| 403 |
yield content
|
| 404 |
else:
|
|
|
|
| 405 |
query = web_command
|
| 406 |
-
yield "🧤 Performing web search..."
|
| 407 |
searcher = DuckDuckGoSearchTool()
|
| 408 |
results = searcher.forward(query)
|
| 409 |
yield results
|
| 410 |
return
|
| 411 |
|
| 412 |
-
# --- rAgent Reasoning ---
|
| 413 |
if text.strip().lower().startswith("@ragent"):
|
| 414 |
prompt = text[len("@ragent"):].strip()
|
| 415 |
-
yield "📝 Initiating reasoning chain..."
|
|
|
|
| 416 |
for partial in ragent_reasoning(prompt, clean_chat_history(chat_history)):
|
| 417 |
yield partial
|
| 418 |
return
|
| 419 |
|
| 420 |
-
# --- YOLO Object Detection ---
|
| 421 |
if text.strip().lower().startswith("@yolo"):
|
| 422 |
-
yield "🔍 Running object detection..."
|
| 423 |
if not files or len(files) == 0:
|
| 424 |
-
yield "Error: Please attach an image for YOLO."
|
| 425 |
return
|
|
|
|
| 426 |
input_file = files[0]
|
| 427 |
try:
|
| 428 |
-
|
|
|
|
|
|
|
|
|
|
| 429 |
except Exception as e:
|
| 430 |
yield f"Error loading image: {str(e)}"
|
| 431 |
return
|
|
@@ -434,63 +571,64 @@ def generate(
|
|
| 434 |
yield gr.Image(result_img)
|
| 435 |
return
|
| 436 |
|
| 437 |
-
# --- Phi-4 Multimodal
|
| 438 |
if text.strip().lower().startswith("@phi4"):
|
| 439 |
-
|
| 440 |
-
if
|
| 441 |
-
yield "Error:
|
| 442 |
return
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
if input_type not in ["image", "audio"]:
|
| 447 |
-
yield "Error: Input type must be 'image' or 'audio'."
|
| 448 |
return
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 452 |
return
|
| 453 |
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
file_input = files[0]
|
| 458 |
-
|
| 459 |
-
try:
|
| 460 |
-
if input_type == "image":
|
| 461 |
-
prompt = f'<|user|><|image_1|>{question}<|end|><|assistant|>'
|
| 462 |
-
image = Image.open(file_input)
|
| 463 |
-
inputs = phi4_processor(text=prompt, images=image, return_tensors='pt').to(phi4_model.device)
|
| 464 |
-
elif input_type == "audio":
|
| 465 |
-
prompt = f'<|user|><|audio_1|>{question}<|end|><|assistant|>'
|
| 466 |
-
audio, samplerate = sf.read(file_input)
|
| 467 |
-
inputs = phi4_processor(text=prompt, audios=[(audio, samplerate)], return_tensors='pt').to(phi4_model.device)
|
| 468 |
-
|
| 469 |
-
streamer = TextIteratorStreamer(phi4_processor, skip_prompt=True, skip_special_tokens=True)
|
| 470 |
-
generation_kwargs = {
|
| 471 |
**inputs,
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
buffer += new_text
|
| 482 |
-
buffer = buffer.replace("<|im_end|>", "")
|
| 483 |
-
time.sleep(0.01)
|
| 484 |
-
yield buffer
|
| 485 |
-
except Exception as e:
|
| 486 |
-
yield f"Error processing file: {str(e)}"
|
| 487 |
return
|
| 488 |
|
| 489 |
-
# --- Text and TTS
|
| 490 |
tts_prefix = "@tts"
|
| 491 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
| 492 |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
| 493 |
-
|
| 494 |
if is_tts and voice_index:
|
| 495 |
voice = TTS_VOICES[voice_index - 1]
|
| 496 |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
|
@@ -502,7 +640,12 @@ def generate(
|
|
| 502 |
conversation.append({"role": "user", "content": text})
|
| 503 |
|
| 504 |
if files:
|
| 505 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 506 |
messages = [{
|
| 507 |
"role": "user",
|
| 508 |
"content": [
|
|
@@ -528,7 +671,7 @@ def generate(
|
|
| 528 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
| 529 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 530 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
| 531 |
-
gr.Warning(f"Trimmed input
|
| 532 |
input_ids = input_ids.to(model.device)
|
| 533 |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
| 534 |
generation_kwargs = {
|
|
@@ -557,24 +700,14 @@ def generate(
|
|
| 557 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
| 558 |
yield gr.Audio(output_file, autoplay=True)
|
| 559 |
|
| 560 |
-
# Gradio Interface
|
| 561 |
-
|
| 562 |
-
DESCRIPTION = """
|
| 563 |
-
# Agent Dino 🌠
|
| 564 |
-
Multimodal chatbot with text, image, audio, 3D generation, web search, reasoning, and object detection.
|
| 565 |
-
"""
|
| 566 |
-
|
| 567 |
-
css = '''
|
| 568 |
-
h1 { text-align: center; }
|
| 569 |
-
#duplicate-button { margin: auto; color: #fff; background: #1565c0; border-radius: 100vh; }
|
| 570 |
-
'''
|
| 571 |
|
| 572 |
demo = gr.ChatInterface(
|
| 573 |
fn=generate,
|
| 574 |
additional_inputs=[
|
| 575 |
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
|
| 576 |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
|
| 577 |
-
gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
|
| 578 |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
| 579 |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
|
| 580 |
],
|
|
@@ -585,10 +718,9 @@ demo = gr.ChatInterface(
|
|
| 585 |
[{"text": "Summarize the letter", "files": ["examples/1.png"]}],
|
| 586 |
[{"text": "@yolo", "files": ["examples/yolo.jpeg"]}],
|
| 587 |
["@rAgent Explain how a binary search algorithm works."],
|
| 588 |
-
["@web Is Grok-3 Beats DeepSeek-R1 at Reasoning?"],
|
| 589 |
["@tts1 Explain Tower of Hanoi"],
|
| 590 |
-
[
|
| 591 |
-
[{"text": "@phi4 audio Transcribe this audio.", "files": ["examples/audio.wav"]}],
|
| 592 |
],
|
| 593 |
cache_examples=False,
|
| 594 |
type="messages",
|
|
@@ -596,15 +728,16 @@ demo = gr.ChatInterface(
|
|
| 596 |
css=css,
|
| 597 |
fill_height=True,
|
| 598 |
textbox=gr.MultimodalTextbox(
|
| 599 |
-
label="Query Input",
|
| 600 |
file_types=["image", "audio"],
|
| 601 |
-
file_count="multiple",
|
| 602 |
-
placeholder="@tts1
|
| 603 |
),
|
| 604 |
stop_btn="Stop Generation",
|
| 605 |
multimodal=True,
|
| 606 |
)
|
| 607 |
|
|
|
|
| 608 |
if not os.path.exists("static"):
|
| 609 |
os.makedirs("static")
|
| 610 |
|
|
|
|
| 17 |
from PIL import Image
|
| 18 |
import edge_tts
|
| 19 |
import trimesh
|
| 20 |
+
import soundfile as sf # New import for audio file reading
|
| 21 |
|
| 22 |
import supervision as sv
|
| 23 |
from ultralytics import YOLO as YOLODetector
|
|
|
|
| 46 |
return seed
|
| 47 |
|
| 48 |
def glb_to_data_url(glb_path: str) -> str:
|
| 49 |
+
"""
|
| 50 |
+
Reads a GLB file from disk and returns a data URL with a base64 encoded representation.
|
| 51 |
+
(Not used in this method.)
|
| 52 |
+
"""
|
| 53 |
with open(glb_path, "rb") as f:
|
| 54 |
data = f.read()
|
| 55 |
b64_data = base64.b64encode(data).decode("utf-8")
|
|
|
|
| 62 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 63 |
self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16)
|
| 64 |
self.pipe.to(self.device)
|
| 65 |
+
# Ensure the text encoder is in half precision to avoid dtype mismatches.
|
| 66 |
if torch.cuda.is_available():
|
| 67 |
try:
|
| 68 |
self.pipe.text_encoder = self.pipe.text_encoder.half()
|
|
|
|
| 71 |
|
| 72 |
self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16)
|
| 73 |
self.pipe_img.to(self.device)
|
| 74 |
+
# Use getattr with a default value to avoid AttributeError if text_encoder is missing.
|
| 75 |
if torch.cuda.is_available():
|
| 76 |
text_encoder_img = getattr(self.pipe_img, "text_encoder", None)
|
| 77 |
if text_encoder_img is not None:
|
|
|
|
| 79 |
|
| 80 |
def to_glb(self, ply_path: str) -> str:
|
| 81 |
mesh = trimesh.load(ply_path)
|
| 82 |
+
# Rotate the mesh for proper orientation
|
| 83 |
rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0])
|
| 84 |
mesh.apply_transform(rot)
|
| 85 |
rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
|
|
|
|
| 114 |
export_to_ply(images[0], ply_path.name)
|
| 115 |
return self.to_glb(ply_path.name)
|
| 116 |
|
| 117 |
+
# New Tools for Web Functionality using DuckDuckGo and smolagents
|
| 118 |
|
| 119 |
from typing import Any, Optional
|
| 120 |
from smolagents.tools import Tool
|
|
|
|
| 122 |
|
| 123 |
class DuckDuckGoSearchTool(Tool):
|
| 124 |
name = "web_search"
|
| 125 |
+
description = "Performs a duckduckgo web search based on your query (think a Google search) then returns the top search results."
|
| 126 |
+
inputs = {'query': {'type': 'string', 'description': 'The search query to perform.'}}
|
| 127 |
output_type = "string"
|
| 128 |
|
| 129 |
def __init__(self, max_results=10, **kwargs):
|
| 130 |
super().__init__()
|
| 131 |
self.max_results = max_results
|
| 132 |
+
try:
|
| 133 |
+
from duckduckgo_search import DDGS
|
| 134 |
+
except ImportError as e:
|
| 135 |
+
raise ImportError(
|
| 136 |
+
"You must install package `duckduckgo_search` to run this tool: for instance run `pip install duckduckgo-search`."
|
| 137 |
+
) from e
|
| 138 |
self.ddgs = DDGS(**kwargs)
|
| 139 |
|
| 140 |
def forward(self, query: str) -> str:
|
| 141 |
results = self.ddgs.text(query, max_results=self.max_results)
|
| 142 |
if len(results) == 0:
|
| 143 |
+
raise Exception("No results found! Try a less restrictive/shorter query.")
|
| 144 |
postprocessed_results = [
|
| 145 |
f"[{result['title']}]({result['href']})\n{result['body']}" for result in results
|
| 146 |
]
|
|
|
|
| 148 |
|
| 149 |
class VisitWebpageTool(Tool):
|
| 150 |
name = "visit_webpage"
|
| 151 |
+
description = "Visits a webpage at the given url and reads its content as a markdown string. Use this to browse webpages."
|
| 152 |
+
inputs = {'url': {'type': 'string', 'description': 'The url of the webpage to visit.'}}
|
| 153 |
output_type = "string"
|
| 154 |
|
| 155 |
def __init__(self, *args, **kwargs):
|
| 156 |
self.is_initialized = False
|
| 157 |
|
| 158 |
def forward(self, url: str) -> str:
|
|
|
|
|
|
|
|
|
|
| 159 |
try:
|
| 160 |
+
import requests
|
| 161 |
+
from markdownify import markdownify
|
| 162 |
+
from requests.exceptions import RequestException
|
| 163 |
+
|
| 164 |
+
from smolagents.utils import truncate_content
|
| 165 |
+
except ImportError as e:
|
| 166 |
+
raise ImportError(
|
| 167 |
+
"You must install packages `markdownify` and `requests` to run this tool: for instance run `pip install markdownify requests`."
|
| 168 |
+
) from e
|
| 169 |
+
try:
|
| 170 |
+
# Send a GET request to the URL with a 20-second timeout
|
| 171 |
response = requests.get(url, timeout=20)
|
| 172 |
+
response.raise_for_status() # Raise an exception for bad status codes
|
| 173 |
+
|
| 174 |
+
# Convert the HTML content to Markdown
|
| 175 |
markdown_content = markdownify(response.text).strip()
|
| 176 |
+
|
| 177 |
+
# Remove multiple line breaks
|
| 178 |
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
|
| 179 |
+
|
| 180 |
return truncate_content(markdown_content, 10000)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
+
except requests.exceptions.Timeout:
|
| 183 |
+
return "The request timed out. Please try again later or check the URL."
|
| 184 |
+
except RequestException as e:
|
| 185 |
+
return f"Error fetching the webpage: {str(e)}"
|
| 186 |
+
except Exception as e:
|
| 187 |
+
return f"An unexpected error occurred: {str(e)}"
|
| 188 |
+
|
| 189 |
# rAgent Reasoning using Llama mode OpenAI
|
| 190 |
|
| 191 |
from openai import OpenAI
|
|
|
|
| 197 |
)
|
| 198 |
|
| 199 |
SYSTEM_PROMPT = """
|
| 200 |
+
|
| 201 |
+
"You are an expert assistant who solves tasks using Python code. Follow these steps:\n"
|
| 202 |
+
"1. **Thought**: Explain your reasoning and plan for solving the task.\n"
|
| 203 |
+
"2. **Code**: Write Python code to implement your solution.\n"
|
| 204 |
+
"3. **Observation**: Analyze the output of the code and summarize the results.\n"
|
| 205 |
+
"4. **Final Answer**: Provide a concise conclusion or final result.\n\n"
|
| 206 |
+
f"Task: {task}"
|
| 207 |
+
|
| 208 |
"""
|
| 209 |
|
| 210 |
def ragent_reasoning(prompt: str, history: list[dict], max_tokens: int = 2048, temperature: float = 0.7, top_p: float = 0.95):
|
| 211 |
+
"""
|
| 212 |
+
Uses the Llama mode OpenAI model to perform a structured reasoning chain.
|
| 213 |
+
"""
|
| 214 |
messages = [{"role": "system", "content": SYSTEM_PROMPT}]
|
| 215 |
+
# Incorporate conversation history (if any)
|
| 216 |
for msg in history:
|
| 217 |
if msg.get("role") == "user":
|
| 218 |
messages.append({"role": "user", "content": msg["content"]})
|
|
|
|
| 221 |
messages.append({"role": "user", "content": prompt})
|
| 222 |
response = ""
|
| 223 |
stream = ragent_client.chat.completions.create(
|
| 224 |
+
model="meta-llama/Meta-Llama-3.1-8B-Instruct",
|
| 225 |
+
max_tokens=max_tokens,
|
| 226 |
+
stream=True,
|
| 227 |
+
temperature=temperature,
|
| 228 |
+
top_p=top_p,
|
| 229 |
+
messages=messages,
|
| 230 |
)
|
| 231 |
for message in stream:
|
| 232 |
+
token = message.choices[0].delta.content
|
| 233 |
+
response += token
|
| 234 |
+
yield response
|
| 235 |
+
|
| 236 |
+
# ------------------------------------------------------------------------------
|
| 237 |
+
# New Phi-4 Multimodal Feature (Image & Audio)
|
| 238 |
+
# ------------------------------------------------------------------------------
|
| 239 |
+
# Define prompt structure for Phi-4
|
| 240 |
+
phi4_user_prompt = '<|user|>'
|
| 241 |
+
phi4_assistant_prompt = '<|assistant|>'
|
| 242 |
+
phi4_prompt_suffix = '<|end|>'
|
| 243 |
+
|
| 244 |
+
# Load Phi-4 multimodal model and processor using unique variable names
|
| 245 |
+
phi4_model_path = "microsoft/Phi-4-multimodal-instruct"
|
| 246 |
+
phi4_processor = AutoProcessor.from_pretrained(phi4_model_path, trust_remote_code=True)
|
| 247 |
+
phi4_model = AutoModelForCausalLM.from_pretrained(
|
| 248 |
+
phi4_model_path,
|
| 249 |
+
device_map="auto",
|
| 250 |
+
torch_dtype="auto",
|
| 251 |
+
trust_remote_code=True,
|
| 252 |
+
_attn_implementation="eager",
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
# ------------------------------------------------------------------------------
|
| 256 |
+
# Gradio UI configuration
|
| 257 |
+
# ------------------------------------------------------------------------------
|
| 258 |
+
|
| 259 |
+
DESCRIPTION = """
|
| 260 |
+
# Agent Dino 🌠
|
| 261 |
+
This chatbot supports various commands:
|
| 262 |
+
- **@tts1 / @tts2:** text-to-speech
|
| 263 |
+
- **@image:** image generation
|
| 264 |
+
- **@3d:** 3D mesh generation
|
| 265 |
+
- **@web:** web search/visit
|
| 266 |
+
- **@rAgent:** reasoning chain
|
| 267 |
+
- **@yolo:** object detection
|
| 268 |
+
- **@phi4:** multimodal (image/audio) question answering
|
| 269 |
+
"""
|
| 270 |
+
|
| 271 |
+
css = '''
|
| 272 |
+
h1 {
|
| 273 |
+
text-align: center;
|
| 274 |
+
display: block;
|
| 275 |
+
}
|
| 276 |
+
|
| 277 |
+
#duplicate-button {
|
| 278 |
+
margin: auto;
|
| 279 |
+
color: #fff;
|
| 280 |
+
background: #1565c0;
|
| 281 |
+
border-radius: 100vh;
|
| 282 |
+
}
|
| 283 |
+
'''
|
| 284 |
|
| 285 |
+
MAX_MAX_NEW_TOKENS = 2048
|
| 286 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 287 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 288 |
|
| 289 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 290 |
|
| 291 |
+
# Load Models and Pipelines for Chat, Image, and Multimodal Processing
|
| 292 |
+
# Load the text-only model and tokenizer (for pure text chat)
|
| 293 |
+
|
| 294 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
| 295 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 296 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
| 300 |
)
|
| 301 |
model.eval()
|
| 302 |
|
| 303 |
+
# Voices for text-to-speech
|
| 304 |
+
TTS_VOICES = [
|
| 305 |
+
"en-US-JennyNeural", # @tts1
|
| 306 |
+
"en-US-GuyNeural", # @tts2
|
| 307 |
+
]
|
| 308 |
+
|
| 309 |
+
# Load multimodal processor and model (e.g. for OCR and image processing)
|
| 310 |
+
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
| 311 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 312 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 313 |
MODEL_ID,
|
|
|
|
| 315 |
torch_dtype=torch.float16
|
| 316 |
).to("cuda").eval()
|
| 317 |
|
| 318 |
+
# Asynchronous text-to-speech
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
|
| 320 |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
| 321 |
+
"""Convert text to speech using Edge TTS and save as MP3"""
|
| 322 |
communicate = edge_tts.Communicate(text, voice)
|
| 323 |
await communicate.save(output_file)
|
| 324 |
return output_file
|
| 325 |
|
| 326 |
+
# Utility function to clean conversation history
|
| 327 |
+
|
| 328 |
def clean_chat_history(chat_history):
|
| 329 |
+
"""
|
| 330 |
+
Filter out any chat entries whose "content" is not a string.
|
| 331 |
+
This helps prevent errors when concatenating previous messages.
|
| 332 |
+
"""
|
| 333 |
cleaned = []
|
| 334 |
for msg in chat_history:
|
| 335 |
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
|
| 336 |
cleaned.append(msg)
|
| 337 |
return cleaned
|
| 338 |
|
| 339 |
+
# Stable Diffusion XL Pipeline for Image Generation
|
| 340 |
+
# Model In Use : SG161222/RealVisXL_V5.0_Lightning
|
| 341 |
+
|
| 342 |
+
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # SDXL Model repository path via env variable
|
| 343 |
+
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
| 344 |
+
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
| 345 |
+
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
| 346 |
+
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # For batched image generation
|
| 347 |
+
|
| 348 |
+
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 349 |
+
MODEL_ID_SD,
|
| 350 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 351 |
+
use_safetensors=True,
|
| 352 |
+
add_watermarker=False,
|
| 353 |
+
).to(device)
|
| 354 |
+
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
| 355 |
+
|
| 356 |
+
if torch.cuda.is_available():
|
| 357 |
+
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
|
| 358 |
+
|
| 359 |
+
if USE_TORCH_COMPILE:
|
| 360 |
+
sd_pipe.compile()
|
| 361 |
+
|
| 362 |
+
if ENABLE_CPU_OFFLOAD:
|
| 363 |
+
sd_pipe.enable_model_cpu_offload()
|
| 364 |
+
|
| 365 |
def save_image(img: Image.Image) -> str:
|
| 366 |
+
"""Save a PIL image with a unique filename and return the path."""
|
| 367 |
unique_name = str(uuid.uuid4()) + ".png"
|
| 368 |
img.save(unique_name)
|
| 369 |
return unique_name
|
|
|
|
| 383 |
num_images: int = 1,
|
| 384 |
progress=gr.Progress(track_tqdm=True),
|
| 385 |
):
|
| 386 |
+
"""Generate images using the SDXL pipeline."""
|
| 387 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 388 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 389 |
+
|
| 390 |
options = {
|
| 391 |
"prompt": [prompt] * num_images,
|
| 392 |
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
|
|
|
| 399 |
}
|
| 400 |
if use_resolution_binning:
|
| 401 |
options["use_resolution_binning"] = True
|
| 402 |
+
|
| 403 |
images = []
|
| 404 |
+
# Process in batches
|
| 405 |
+
for i in range(0, num_images, BATCH_SIZE):
|
| 406 |
batch_options = options.copy()
|
| 407 |
+
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
| 408 |
+
if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None:
|
| 409 |
+
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
| 410 |
if device.type == "cuda":
|
| 411 |
with torch.autocast("cuda", dtype=torch.float16):
|
| 412 |
outputs = sd_pipe(**batch_options)
|
|
|
|
| 416 |
image_paths = [save_image(img) for img in images]
|
| 417 |
return image_paths, seed
|
| 418 |
|
| 419 |
+
# Text-to-3D Generation using the ShapE Pipeline
|
| 420 |
+
|
| 421 |
@spaces.GPU(duration=120, enable_queue=True)
|
| 422 |
def generate_3d_fn(
|
| 423 |
prompt: str,
|
|
|
|
| 426 |
num_steps: int = 64,
|
| 427 |
randomize_seed: bool = False,
|
| 428 |
):
|
| 429 |
+
"""
|
| 430 |
+
Generate a 3D model from text using the ShapE pipeline.
|
| 431 |
+
Returns a tuple of (glb_file_path, used_seed).
|
| 432 |
+
"""
|
| 433 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 434 |
model3d = Model()
|
| 435 |
glb_path = model3d.run_text(prompt, seed=seed, guidance_scale=guidance_scale, num_steps=num_steps)
|
| 436 |
return glb_path, seed
|
| 437 |
|
| 438 |
+
# YOLO Object Detection Setup
|
| 439 |
+
YOLO_MODEL_REPO = "strangerzonehf/Flux-Ultimate-LoRA-Collection"
|
| 440 |
+
YOLO_CHECKPOINT_NAME = "images/demo.pt"
|
| 441 |
+
yolo_model_path = hf_hub_download(repo_id=YOLO_MODEL_REPO, filename=YOLO_CHECKPOINT_NAME)
|
| 442 |
+
yolo_detector = YOLODetector(yolo_model_path)
|
| 443 |
+
|
| 444 |
def detect_objects(image: np.ndarray):
|
| 445 |
+
"""Runs object detection on the input image."""
|
| 446 |
results = yolo_detector(image, verbose=False)[0]
|
| 447 |
detections = sv.Detections.from_ultralytics(results).with_nms()
|
| 448 |
+
|
| 449 |
box_annotator = sv.BoxAnnotator()
|
| 450 |
label_annotator = sv.LabelAnnotator()
|
| 451 |
+
|
| 452 |
annotated_image = image.copy()
|
| 453 |
annotated_image = box_annotator.annotate(scene=annotated_image, detections=detections)
|
| 454 |
annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections)
|
| 455 |
+
|
| 456 |
return Image.fromarray(annotated_image)
|
| 457 |
|
| 458 |
+
# Chat Generation Function with support for @tts, @image, @3d, @web, @rAgent, @yolo, and now @phi4 commands
|
| 459 |
|
| 460 |
@spaces.GPU
|
| 461 |
def generate(
|
|
|
|
| 467 |
top_k: int = 50,
|
| 468 |
repetition_penalty: float = 1.2,
|
| 469 |
):
|
| 470 |
+
"""
|
| 471 |
+
Generates chatbot responses with support for multimodal input and special commands:
|
| 472 |
+
- "@tts1" or "@tts2": triggers text-to-speech.
|
| 473 |
+
- "@image": triggers image generation using the SDXL pipeline.
|
| 474 |
+
- "@3d": triggers 3D model generation using the ShapE pipeline.
|
| 475 |
+
- "@web": triggers a web search or webpage visit.
|
| 476 |
+
- "@rAgent": initiates a reasoning chain using Llama mode.
|
| 477 |
+
- "@yolo": triggers object detection using YOLO.
|
| 478 |
+
- **"@phi4": triggers multimodal (image/audio) processing using the Phi-4 model.**
|
| 479 |
+
"""
|
| 480 |
text = input_dict["text"]
|
| 481 |
files = input_dict.get("files", [])
|
| 482 |
|
| 483 |
+
# --- 3D Generation branch ---
|
| 484 |
if text.strip().lower().startswith("@3d"):
|
| 485 |
prompt = text[len("@3d"):].strip()
|
| 486 |
+
yield "🌀 Hold tight, generating a 3D mesh GLB file....."
|
| 487 |
glb_path, used_seed = generate_3d_fn(
|
| 488 |
prompt=prompt,
|
| 489 |
seed=1,
|
|
|
|
| 491 |
num_steps=64,
|
| 492 |
randomize_seed=True,
|
| 493 |
)
|
| 494 |
+
# Copy the GLB file to a static folder.
|
| 495 |
static_folder = os.path.join(os.getcwd(), "static")
|
| 496 |
if not os.path.exists(static_folder):
|
| 497 |
os.makedirs(static_folder)
|
| 498 |
new_filename = f"mesh_{uuid.uuid4()}.glb"
|
| 499 |
new_filepath = os.path.join(static_folder, new_filename)
|
| 500 |
shutil.copy(glb_path, new_filepath)
|
| 501 |
+
|
| 502 |
yield gr.File(new_filepath)
|
| 503 |
return
|
| 504 |
|
| 505 |
+
# --- Image Generation branch ---
|
| 506 |
if text.strip().lower().startswith("@image"):
|
| 507 |
prompt = text[len("@image"):].strip()
|
| 508 |
yield "🪧 Generating image..."
|
| 509 |
image_paths, used_seed = generate_image_fn(
|
| 510 |
prompt=prompt,
|
| 511 |
+
negative_prompt="",
|
| 512 |
+
use_negative_prompt=False,
|
| 513 |
seed=1,
|
| 514 |
+
width=1024,
|
| 515 |
+
height=1024,
|
| 516 |
+
guidance_scale=3,
|
| 517 |
+
num_inference_steps=25,
|
| 518 |
randomize_seed=True,
|
| 519 |
+
use_resolution_binning=True,
|
| 520 |
num_images=1,
|
| 521 |
)
|
| 522 |
yield gr.Image(image_paths[0])
|
| 523 |
return
|
| 524 |
|
| 525 |
+
# --- Web Search/Visit branch ---
|
| 526 |
if text.strip().lower().startswith("@web"):
|
| 527 |
web_command = text[len("@web"):].strip()
|
| 528 |
+
# If the command starts with "visit", then treat the rest as a URL
|
| 529 |
if web_command.lower().startswith("visit"):
|
| 530 |
url = web_command[len("visit"):].strip()
|
| 531 |
yield "🌍 Visiting webpage..."
|
|
|
|
| 533 |
content = visitor.forward(url)
|
| 534 |
yield content
|
| 535 |
else:
|
| 536 |
+
# Otherwise, treat the rest as a search query.
|
| 537 |
query = web_command
|
| 538 |
+
yield "🧤 Performing a web search ..."
|
| 539 |
searcher = DuckDuckGoSearchTool()
|
| 540 |
results = searcher.forward(query)
|
| 541 |
yield results
|
| 542 |
return
|
| 543 |
|
| 544 |
+
# --- rAgent Reasoning branch ---
|
| 545 |
if text.strip().lower().startswith("@ragent"):
|
| 546 |
prompt = text[len("@ragent"):].strip()
|
| 547 |
+
yield "📝 Initiating reasoning chain using Llama mode..."
|
| 548 |
+
# Pass the current chat history (cleaned) to help inform the chain.
|
| 549 |
for partial in ragent_reasoning(prompt, clean_chat_history(chat_history)):
|
| 550 |
yield partial
|
| 551 |
return
|
| 552 |
|
| 553 |
+
# --- YOLO Object Detection branch ---
|
| 554 |
if text.strip().lower().startswith("@yolo"):
|
| 555 |
+
yield "🔍 Running object detection with YOLO..."
|
| 556 |
if not files or len(files) == 0:
|
| 557 |
+
yield "Error: Please attach an image for YOLO object detection."
|
| 558 |
return
|
| 559 |
+
# Use the first attached image
|
| 560 |
input_file = files[0]
|
| 561 |
try:
|
| 562 |
+
if isinstance(input_file, str):
|
| 563 |
+
pil_image = Image.open(input_file)
|
| 564 |
+
else:
|
| 565 |
+
pil_image = input_file
|
| 566 |
except Exception as e:
|
| 567 |
yield f"Error loading image: {str(e)}"
|
| 568 |
return
|
|
|
|
| 571 |
yield gr.Image(result_img)
|
| 572 |
return
|
| 573 |
|
| 574 |
+
# --- Phi-4 Multimodal branch (Image/Audio) ---
|
| 575 |
if text.strip().lower().startswith("@phi4"):
|
| 576 |
+
question = text[len("@phi4"):].strip()
|
| 577 |
+
if not files:
|
| 578 |
+
yield "Error: Please attach an image or audio file for @phi4 multimodal processing."
|
| 579 |
return
|
| 580 |
+
if not question:
|
| 581 |
+
yield "Error: Please provide a question after @phi4."
|
|
|
|
|
|
|
|
|
|
| 582 |
return
|
| 583 |
+
# Determine input type (Image or Audio) from the first file
|
| 584 |
+
input_file = files[0]
|
| 585 |
+
try:
|
| 586 |
+
# If file is already a PIL Image, treat as image
|
| 587 |
+
if isinstance(input_file, Image.Image):
|
| 588 |
+
input_type = "Image"
|
| 589 |
+
file_for_phi4 = input_file
|
| 590 |
+
else:
|
| 591 |
+
# Try opening as image; if it fails, assume audio
|
| 592 |
+
try:
|
| 593 |
+
file_for_phi4 = Image.open(input_file)
|
| 594 |
+
input_type = "Image"
|
| 595 |
+
except Exception:
|
| 596 |
+
input_type = "Audio"
|
| 597 |
+
file_for_phi4 = input_file
|
| 598 |
+
except Exception:
|
| 599 |
+
input_type = "Audio"
|
| 600 |
+
file_for_phi4 = input_file
|
| 601 |
+
|
| 602 |
+
if input_type == "Image":
|
| 603 |
+
phi4_prompt = f'{phi4_user_prompt}<|image_1|>{question}{phi4_prompt_suffix}{phi4_assistant_prompt}'
|
| 604 |
+
inputs = phi4_processor(text=phi4_prompt, images=file_for_phi4, return_tensors='pt').to(phi4_model.device)
|
| 605 |
+
elif input_type == "Audio":
|
| 606 |
+
phi4_prompt = f'{phi4_user_prompt}<|audio_1|>{question}{phi4_prompt_suffix}{phi4_assistant_prompt}'
|
| 607 |
+
audio, samplerate = sf.read(file_for_phi4)
|
| 608 |
+
inputs = phi4_processor(text=phi4_prompt, audios=[(audio, samplerate)], return_tensors='pt').to(phi4_model.device)
|
| 609 |
+
else:
|
| 610 |
+
yield "Invalid file type for @phi4 multimodal processing."
|
| 611 |
return
|
| 612 |
|
| 613 |
+
with torch.no_grad():
|
| 614 |
+
generate_ids = phi4_model.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 615 |
**inputs,
|
| 616 |
+
max_new_tokens=200,
|
| 617 |
+
num_logits_to_keep=0,
|
| 618 |
+
)
|
| 619 |
+
input_length = inputs['input_ids'].shape[1]
|
| 620 |
+
generate_ids = generate_ids[:, input_length:]
|
| 621 |
+
response = phi4_processor.batch_decode(
|
| 622 |
+
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 623 |
+
)[0]
|
| 624 |
+
yield response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 625 |
return
|
| 626 |
|
| 627 |
+
# --- Text and TTS branch ---
|
| 628 |
tts_prefix = "@tts"
|
| 629 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
| 630 |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
| 631 |
+
|
| 632 |
if is_tts and voice_index:
|
| 633 |
voice = TTS_VOICES[voice_index - 1]
|
| 634 |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
|
|
|
| 640 |
conversation.append({"role": "user", "content": text})
|
| 641 |
|
| 642 |
if files:
|
| 643 |
+
if len(files) > 1:
|
| 644 |
+
images = [load_image(image) for image in files]
|
| 645 |
+
elif len(files) == 1:
|
| 646 |
+
images = [load_image(files[0])]
|
| 647 |
+
else:
|
| 648 |
+
images = []
|
| 649 |
messages = [{
|
| 650 |
"role": "user",
|
| 651 |
"content": [
|
|
|
|
| 671 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
| 672 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 673 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
| 674 |
+
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
| 675 |
input_ids = input_ids.to(model.device)
|
| 676 |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
| 677 |
generation_kwargs = {
|
|
|
|
| 700 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
| 701 |
yield gr.Audio(output_file, autoplay=True)
|
| 702 |
|
| 703 |
+
# Gradio Chat Interface Setup and Launch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 704 |
|
| 705 |
demo = gr.ChatInterface(
|
| 706 |
fn=generate,
|
| 707 |
additional_inputs=[
|
| 708 |
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
|
| 709 |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
|
| 710 |
+
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
|
| 711 |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
| 712 |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
|
| 713 |
],
|
|
|
|
| 718 |
[{"text": "Summarize the letter", "files": ["examples/1.png"]}],
|
| 719 |
[{"text": "@yolo", "files": ["examples/yolo.jpeg"]}],
|
| 720 |
["@rAgent Explain how a binary search algorithm works."],
|
| 721 |
+
["@web Is Grok-3 Beats DeepSeek-R1 at Reasoning ?"],
|
| 722 |
["@tts1 Explain Tower of Hanoi"],
|
| 723 |
+
["@phi4 What is depicted in this image?"], # Example for @phi4
|
|
|
|
| 724 |
],
|
| 725 |
cache_examples=False,
|
| 726 |
type="messages",
|
|
|
|
| 728 |
css=css,
|
| 729 |
fill_height=True,
|
| 730 |
textbox=gr.MultimodalTextbox(
|
| 731 |
+
label="Query Input",
|
| 732 |
file_types=["image", "audio"],
|
| 733 |
+
file_count="multiple",
|
| 734 |
+
placeholder="@tts1, @tts2, @image, @3d, @phi4, @rAgent, @web, @yolo, or plain text"
|
| 735 |
),
|
| 736 |
stop_btn="Stop Generation",
|
| 737 |
multimodal=True,
|
| 738 |
)
|
| 739 |
|
| 740 |
+
# Ensure the static folder exists
|
| 741 |
if not os.path.exists("static"):
|
| 742 |
os.makedirs("static")
|
| 743 |
|