Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
import os | |
import re | |
import tempfile | |
import gc # garbage collector ์ถ๊ฐ | |
from collections.abc import Iterator | |
from threading import Thread | |
import json | |
import requests | |
import cv2 | |
import gradio as gr | |
import spaces | |
import torch | |
from loguru import logger | |
from PIL import Image | |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer | |
# CSV/TXT ๋ถ์ | |
import pandas as pd | |
# PDF ํ ์คํธ ์ถ์ถ | |
import PyPDF2 | |
############################################################################## | |
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ํจ์ ์ถ๊ฐ | |
############################################################################## | |
def clear_cuda_cache(): | |
"""CUDA ์บ์๋ฅผ ๋ช ์์ ์ผ๋ก ๋น์๋๋ค.""" | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
############################################################################## | |
# SERPHouse API key from environment variable | |
############################################################################## | |
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "") | |
############################################################################## | |
# ๊ฐ๋จํ ํค์๋ ์ถ์ถ ํจ์ (ํ๊ธ + ์ํ๋ฒณ + ์ซ์ + ๊ณต๋ฐฑ ๋ณด์กด) | |
############################################################################## | |
def extract_keywords(text: str, top_k: int = 5) -> str: | |
""" | |
1) ํ๊ธ(๊ฐ-ํฃ), ์์ด(a-zA-Z), ์ซ์(0-9), ๊ณต๋ฐฑ๋ง ๋จ๊น | |
2) ๊ณต๋ฐฑ ๊ธฐ์ค ํ ํฐ ๋ถ๋ฆฌ | |
3) ์ต๋ top_k๊ฐ๋ง | |
""" | |
text = re.sub(r"[^a-zA-Z0-9๊ฐ-ํฃ\s]", "", text) | |
tokens = text.split() | |
key_tokens = tokens[:top_k] | |
return " ".join(key_tokens) | |
############################################################################## | |
# SerpHouse Live endpoint ํธ์ถ | |
# - ์์ 20๊ฐ ๊ฒฐ๊ณผ JSON์ LLM์ ๋๊ธธ ๋ link, snippet ๋ฑ ๋ชจ๋ ํฌํจ | |
############################################################################## | |
def do_web_search(query: str) -> str: | |
""" | |
์์ 20๊ฐ 'organic' ๊ฒฐ๊ณผ item ์ ์ฒด(์ ๋ชฉ, link, snippet ๋ฑ)๋ฅผ | |
JSON ๋ฌธ์์ด ํํ๋ก ๋ฐํ | |
""" | |
try: | |
url = "https://api.serphouse.com/serp/live" | |
# ๊ธฐ๋ณธ GET ๋ฐฉ์์ผ๋ก ํ๋ผ๋ฏธํฐ ๊ฐ์ํํ๊ณ ๊ฒฐ๊ณผ ์๋ฅผ 20๊ฐ๋ก ์ ํ | |
params = { | |
"q": query, | |
"domain": "google.com", | |
"serp_type": "web", # ๊ธฐ๋ณธ ์น ๊ฒ์ | |
"device": "desktop", | |
"lang": "en", | |
"num": "20" # ์ต๋ 20๊ฐ ๊ฒฐ๊ณผ๋ง ์์ฒญ | |
} | |
headers = { | |
"Authorization": f"Bearer {SERPHOUSE_API_KEY}" | |
} | |
logger.info(f"SerpHouse API ํธ์ถ ์ค... ๊ฒ์์ด: {query}") | |
logger.info(f"์์ฒญ URL: {url} - ํ๋ผ๋ฏธํฐ: {params}") | |
# GET ์์ฒญ ์ํ | |
response = requests.get(url, headers=headers, params=params, timeout=60) | |
response.raise_for_status() | |
logger.info(f"SerpHouse API ์๋ต ์ํ ์ฝ๋: {response.status_code}") | |
data = response.json() | |
# ๋ค์ํ ์๋ต ๊ตฌ์กฐ ์ฒ๋ฆฌ | |
results = data.get("results", {}) | |
organic = None | |
# ๊ฐ๋ฅํ ์๋ต ๊ตฌ์กฐ 1 | |
if isinstance(results, dict) and "organic" in results: | |
organic = results["organic"] | |
# ๊ฐ๋ฅํ ์๋ต ๊ตฌ์กฐ 2 (์ค์ฒฉ๋ results) | |
elif isinstance(results, dict) and "results" in results: | |
if isinstance(results["results"], dict) and "organic" in results["results"]: | |
organic = results["results"]["organic"] | |
# ๊ฐ๋ฅํ ์๋ต ๊ตฌ์กฐ 3 (์ต์์ organic) | |
elif "organic" in data: | |
organic = data["organic"] | |
if not organic: | |
logger.warning("์๋ต์์ organic ๊ฒฐ๊ณผ๋ฅผ ์ฐพ์ ์ ์์ต๋๋ค.") | |
logger.debug(f"์๋ต ๊ตฌ์กฐ: {list(data.keys())}") | |
if isinstance(results, dict): | |
logger.debug(f"results ๊ตฌ์กฐ: {list(results.keys())}") | |
return "No web search results found or unexpected API response structure." | |
# ๊ฒฐ๊ณผ ์ ์ ํ ๋ฐ ์ปจํ ์คํธ ๊ธธ์ด ์ต์ ํ | |
max_results = min(20, len(organic)) | |
limited_organic = organic[:max_results] | |
# ๊ฒฐ๊ณผ ํ์ ๊ฐ์ - ๋งํฌ๋ค์ด ํ์์ผ๋ก ์ถ๋ ฅํ์ฌ ๊ฐ๋ ์ฑ ํฅ์ | |
summary_lines = [] | |
for idx, item in enumerate(limited_organic, start=1): | |
title = item.get("title", "No title") | |
link = item.get("link", "#") | |
snippet = item.get("snippet", "No description") | |
displayed_link = item.get("displayed_link", link) | |
# ๋งํฌ๋ค์ด ํ์ (๋งํฌ ํด๋ฆญ ๊ฐ๋ฅ) | |
summary_lines.append( | |
f"### Result {idx}: {title}\n\n" | |
f"{snippet}\n\n" | |
f"**์ถ์ฒ**: [{displayed_link}]({link})\n\n" | |
f"---\n" | |
) | |
# ๋ชจ๋ธ์๊ฒ ๋ช ํํ ์ง์นจ ์ถ๊ฐ | |
instructions = """ | |
# ์น ๊ฒ์ ๊ฒฐ๊ณผ | |
์๋๋ ๊ฒ์ ๊ฒฐ๊ณผ์ ๋๋ค. ์ง๋ฌธ์ ๋ต๋ณํ ๋ ์ด ์ ๋ณด๋ฅผ ํ์ฉํ์ธ์: | |
1. ๊ฐ ๊ฒฐ๊ณผ์ ์ ๋ชฉ, ๋ด์ฉ, ์ถ์ฒ ๋งํฌ๋ฅผ ์ฐธ๊ณ ํ์ธ์ | |
2. ๋ต๋ณ์ ๊ด๋ จ ์ ๋ณด์ ์ถ์ฒ๋ฅผ ๋ช ์์ ์ผ๋ก ์ธ์ฉํ์ธ์ (์: "X ์ถ์ฒ์ ๋ฐ๋ฅด๋ฉด...") | |
3. ์๋ต์ ์ค์ ์ถ์ฒ ๋งํฌ๋ฅผ ํฌํจํ์ธ์ | |
4. ์ฌ๋ฌ ์ถ์ฒ์ ์ ๋ณด๋ฅผ ์ข ํฉํ์ฌ ๋ต๋ณํ์ธ์ | |
""" | |
search_results = instructions + "\n".join(summary_lines) | |
logger.info(f"๊ฒ์ ๊ฒฐ๊ณผ {len(limited_organic)}๊ฐ ์ฒ๋ฆฌ ์๋ฃ") | |
return search_results | |
except Exception as e: | |
logger.error(f"Web search failed: {e}") | |
return f"Web search failed: {str(e)}" | |
############################################################################## | |
# ๋ชจ๋ธ/ํ๋ก์ธ์ ๋ก๋ฉ | |
############################################################################## | |
MAX_CONTENT_CHARS = 2000 | |
MAX_INPUT_LENGTH = 2096 # ์ต๋ ์ ๋ ฅ ํ ํฐ ์ ์ ํ ์ถ๊ฐ | |
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma-3-R1984-4B") | |
processor = AutoProcessor.from_pretrained(model_id, padding_side="left") | |
model = Gemma3ForConditionalGeneration.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
attn_implementation="eager" # ๊ฐ๋ฅํ๋ค๋ฉด "flash_attention_2"๋ก ๋ณ๊ฒฝ | |
) | |
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5")) | |
############################################################################## | |
# CSV, TXT, PDF ๋ถ์ ํจ์ | |
############################################################################## | |
def analyze_csv_file(path: str) -> str: | |
""" | |
CSV ํ์ผ์ ์ ์ฒด ๋ฌธ์์ด๋ก ๋ณํ. ๋๋ฌด ๊ธธ ๊ฒฝ์ฐ ์ผ๋ถ๋ง ํ์. | |
""" | |
try: | |
df = pd.read_csv(path) | |
if df.shape[0] > 50 or df.shape[1] > 10: | |
df = df.iloc[:50, :10] | |
df_str = df.to_string() | |
if len(df_str) > MAX_CONTENT_CHARS: | |
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..." | |
return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}" | |
except Exception as e: | |
return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}" | |
def analyze_txt_file(path: str) -> str: | |
""" | |
TXT ํ์ผ ์ ๋ฌธ ์ฝ๊ธฐ. ๋๋ฌด ๊ธธ๋ฉด ์ผ๋ถ๋ง ํ์. | |
""" | |
try: | |
with open(path, "r", encoding="utf-8") as f: | |
text = f.read() | |
if len(text) > MAX_CONTENT_CHARS: | |
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..." | |
return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}" | |
except Exception as e: | |
return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}" | |
def pdf_to_markdown(pdf_path: str) -> str: | |
""" | |
PDF ํ ์คํธ๋ฅผ Markdown์ผ๋ก ๋ณํ. ํ์ด์ง๋ณ๋ก ๊ฐ๋จํ ํ ์คํธ ์ถ์ถ. | |
""" | |
text_chunks = [] | |
try: | |
with open(pdf_path, "rb") as f: | |
reader = PyPDF2.PdfReader(f) | |
max_pages = min(5, len(reader.pages)) | |
for page_num in range(max_pages): | |
page = reader.pages[page_num] | |
page_text = page.extract_text() or "" | |
page_text = page_text.strip() | |
if page_text: | |
if len(page_text) > MAX_CONTENT_CHARS // max_pages: | |
page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)" | |
text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n") | |
if len(reader.pages) > max_pages: | |
text_chunks.append(f"\n...(Showing {max_pages} of {len(reader.pages)} pages)...") | |
except Exception as e: | |
return f"Failed to read PDF ({os.path.basename(pdf_path)}): {str(e)}" | |
full_text = "\n".join(text_chunks) | |
if len(full_text) > MAX_CONTENT_CHARS: | |
full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..." | |
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}" | |
############################################################################## | |
# ์ด๋ฏธ์ง/๋น๋์ค ์ ๋ก๋ ์ ํ ๊ฒ์ฌ | |
############################################################################## | |
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]: | |
image_count = 0 | |
video_count = 0 | |
for path in paths: | |
if path.endswith(".mp4"): | |
video_count += 1 | |
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE): | |
image_count += 1 | |
return image_count, video_count | |
def count_files_in_history(history: list[dict]) -> tuple[int, int]: | |
image_count = 0 | |
video_count = 0 | |
for item in history: | |
if item["role"] != "user" or isinstance(item["content"], str): | |
continue | |
if isinstance(item["content"], list) and len(item["content"]) > 0: | |
file_path = item["content"][0] | |
if isinstance(file_path, str): | |
if file_path.endswith(".mp4"): | |
video_count += 1 | |
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE): | |
image_count += 1 | |
return image_count, video_count | |
def validate_media_constraints(message: dict, history: list[dict]) -> bool: | |
media_files = [] | |
for f in message["files"]: | |
if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"): | |
media_files.append(f) | |
new_image_count, new_video_count = count_files_in_new_message(media_files) | |
history_image_count, history_video_count = count_files_in_history(history) | |
image_count = history_image_count + new_image_count | |
video_count = history_video_count + new_video_count | |
if video_count > 1: | |
gr.Warning("Only one video is supported.") | |
return False | |
if video_count == 1: | |
if image_count > 0: | |
gr.Warning("Mixing images and videos is not allowed.") | |
return False | |
if "<image>" in message["text"]: | |
gr.Warning("Using <image> tags with video files is not supported.") | |
return False | |
if video_count == 0 and image_count > MAX_NUM_IMAGES: | |
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.") | |
return False | |
if "<image>" in message["text"]: | |
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)] | |
image_tag_count = message["text"].count("<image>") | |
if image_tag_count != len(image_files): | |
gr.Warning("The number of <image> tags in the text does not match the number of image files.") | |
return False | |
return True | |
############################################################################## | |
# ๋น๋์ค ์ฒ๋ฆฌ - ์์ ํ์ผ ์ถ์ ์ฝ๋ ์ถ๊ฐ | |
############################################################################## | |
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]: | |
vidcap = cv2.VideoCapture(video_path) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
frame_interval = max(int(fps), int(total_frames / 10)) | |
frames = [] | |
for i in range(0, total_frames, frame_interval): | |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
success, image = vidcap.read() | |
if success: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# ์ด๋ฏธ์ง ํฌ๊ธฐ ์ค์ด๊ธฐ ์ถ๊ฐ | |
image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5) | |
pil_image = Image.fromarray(image) | |
timestamp = round(i / fps, 2) | |
frames.append((pil_image, timestamp)) | |
if len(frames) >= 5: | |
break | |
vidcap.release() | |
return frames | |
def process_video(video_path: str) -> tuple[list[dict], list[str]]: | |
content = [] | |
temp_files = [] # ์์ ํ์ผ ์ถ์ ์ ์ํ ๋ฆฌ์คํธ | |
frames = downsample_video(video_path) | |
for frame in frames: | |
pil_image, timestamp = frame | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: | |
pil_image.save(temp_file.name) | |
temp_files.append(temp_file.name) # ์ถ์ ์ ์ํด ๊ฒฝ๋ก ์ ์ฅ | |
content.append({"type": "text", "text": f"Frame {timestamp}:"}) | |
content.append({"type": "image", "url": temp_file.name}) | |
return content, temp_files | |
############################################################################## | |
# interleaved <image> ์ฒ๋ฆฌ | |
############################################################################## | |
def process_interleaved_images(message: dict) -> list[dict]: | |
parts = re.split(r"(<image>)", message["text"]) | |
content = [] | |
image_index = 0 | |
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)] | |
for part in parts: | |
if part == "<image>" and image_index < len(image_files): | |
content.append({"type": "image", "url": image_files[image_index]}) | |
image_index += 1 | |
elif part.strip(): | |
content.append({"type": "text", "text": part.strip()}) | |
else: | |
if isinstance(part, str) and part != "<image>": | |
content.append({"type": "text", "text": part}) | |
return content | |
############################################################################## | |
# PDF + CSV + TXT + ์ด๋ฏธ์ง/๋น๋์ค | |
############################################################################## | |
def is_image_file(file_path: str) -> bool: | |
return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE)) | |
def is_video_file(file_path: str) -> bool: | |
return file_path.endswith(".mp4") | |
def is_document_file(file_path: str) -> bool: | |
return ( | |
file_path.lower().endswith(".pdf") | |
or file_path.lower().endswith(".csv") | |
or file_path.lower().endswith(".txt") | |
) | |
def process_new_user_message(message: dict) -> tuple[list[dict], list[str]]: | |
temp_files = [] # ์์ ํ์ผ ์ถ์ ์ฉ ๋ฆฌ์คํธ | |
if not message["files"]: | |
return [{"type": "text", "text": message["text"]}], temp_files | |
video_files = [f for f in message["files"] if is_video_file(f)] | |
image_files = [f for f in message["files"] if is_image_file(f)] | |
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")] | |
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")] | |
pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")] | |
content_list = [{"type": "text", "text": message["text"]}] | |
for csv_path in csv_files: | |
csv_analysis = analyze_csv_file(csv_path) | |
content_list.append({"type": "text", "text": csv_analysis}) | |
for txt_path in txt_files: | |
txt_analysis = analyze_txt_file(txt_path) | |
content_list.append({"type": "text", "text": txt_analysis}) | |
for pdf_path in pdf_files: | |
pdf_markdown = pdf_to_markdown(pdf_path) | |
content_list.append({"type": "text", "text": pdf_markdown}) | |
if video_files: | |
video_content, video_temp_files = process_video(video_files[0]) | |
content_list += video_content | |
temp_files.extend(video_temp_files) | |
return content_list, temp_files | |
if "<image>" in message["text"] and image_files: | |
interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files}) | |
if content_list and content_list[0]["type"] == "text": | |
content_list = content_list[1:] | |
return interleaved_content + content_list, temp_files | |
else: | |
for img_path in image_files: | |
content_list.append({"type": "image", "url": img_path}) | |
return content_list, temp_files | |
############################################################################## | |
# history -> LLM ๋ฉ์์ง ๋ณํ | |
############################################################################## | |
def process_history(history: list[dict]) -> list[dict]: | |
messages = [] | |
current_user_content: list[dict] = [] | |
for item in history: | |
if item["role"] == "assistant": | |
if current_user_content: | |
messages.append({"role": "user", "content": current_user_content}) | |
current_user_content = [] | |
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]}) | |
else: | |
content = item["content"] | |
if isinstance(content, str): | |
current_user_content.append({"type": "text", "text": content}) | |
elif isinstance(content, list) and len(content) > 0: | |
file_path = content[0] | |
if is_image_file(file_path): | |
current_user_content.append({"type": "image", "url": file_path}) | |
else: | |
current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"}) | |
if current_user_content: | |
messages.append({"role": "user", "content": current_user_content}) | |
return messages | |
############################################################################## | |
# ๋ชจ๋ธ ์์ฑ ํจ์์์ OOM ์บ์น | |
############################################################################## | |
def _model_gen_with_oom_catch(**kwargs): | |
""" | |
๋ณ๋ ์ค๋ ๋์์ OutOfMemoryError๋ฅผ ์ก์์ฃผ๊ธฐ ์ํด | |
""" | |
try: | |
model.generate(**kwargs) | |
except torch.cuda.OutOfMemoryError: | |
raise RuntimeError( | |
"[OutOfMemoryError] GPU ๋ฉ๋ชจ๋ฆฌ๊ฐ ๋ถ์กฑํฉ๋๋ค. " | |
"Max New Tokens์ ์ค์ด๊ฑฐ๋, ํ๋กฌํํธ ๊ธธ์ด๋ฅผ ์ค์ฌ์ฃผ์ธ์." | |
) | |
finally: | |
# ์์ฑ ์๋ฃ ํ ํ๋ฒ ๋ ์บ์ ๋น์ฐ๊ธฐ | |
clear_cuda_cache() | |
############################################################################## | |
# ๋ฉ์ธ ์ถ๋ก ํจ์ (web search ์ฒดํฌ ์ ์๋ ํค์๋์ถ์ถ->๊ฒ์->๊ฒฐ๊ณผ system msg) | |
############################################################################## | |
def run( | |
message: dict, | |
history: list[dict], | |
system_prompt: str = "", | |
max_new_tokens: int = 512, | |
use_web_search: bool = False, | |
web_search_query: str = "", | |
) -> Iterator[str]: | |
if not validate_media_constraints(message, history): | |
yield "" | |
return | |
temp_files = [] # ์์ ํ์ผ ์ถ์ ์ฉ | |
try: | |
combined_system_msg = "" | |
# ๋ด๋ถ์ ์ผ๋ก๋ง ์ฌ์ฉ (UI์์๋ ๋ณด์ด์ง ์์) | |
if system_prompt.strip(): | |
combined_system_msg += f"[System Prompt]\n{system_prompt.strip()}\n\n" | |
if use_web_search: | |
user_text = message["text"] | |
ws_query = extract_keywords(user_text, top_k=5) | |
if ws_query.strip(): | |
logger.info(f"[Auto WebSearch Keyword] {ws_query!r}") | |
ws_result = do_web_search(ws_query) | |
combined_system_msg += f"[Search top-20 Full Items Based on user prompt]\n{ws_result}\n\n" | |
# >>> ์ถ๊ฐ๋ ์๋ด ๋ฌธ๊ตฌ (๊ฒ์ ๊ฒฐ๊ณผ์ link ๋ฑ ์ถ์ฒ๋ฅผ ํ์ฉ) | |
combined_system_msg += "[์ฐธ๊ณ : ์ ๊ฒ์๊ฒฐ๊ณผ ๋ด์ฉ๊ณผ link๋ฅผ ์ถ์ฒ๋ก ์ธ์ฉํ์ฌ ๋ต๋ณํด ์ฃผ์ธ์.]\n\n" | |
combined_system_msg += """ | |
[์ค์ ์ง์์ฌํญ] | |
1. ๋ต๋ณ์ ๊ฒ์ ๊ฒฐ๊ณผ์์ ์ฐพ์ ์ ๋ณด์ ์ถ์ฒ๋ฅผ ๋ฐ๋์ ์ธ์ฉํ์ธ์. | |
2. ์ถ์ฒ ์ธ์ฉ ์ "[์ถ์ฒ ์ ๋ชฉ](๋งํฌ)" ํ์์ ๋งํฌ๋ค์ด ๋งํฌ๋ฅผ ์ฌ์ฉํ์ธ์. | |
3. ์ฌ๋ฌ ์ถ์ฒ์ ์ ๋ณด๋ฅผ ์ข ํฉํ์ฌ ๋ต๋ณํ์ธ์. | |
4. ๋ต๋ณ ๋ง์ง๋ง์ "์ฐธ๊ณ ์๋ฃ:" ์น์ ์ ์ถ๊ฐํ๊ณ ์ฌ์ฉํ ์ฃผ์ ์ถ์ฒ ๋งํฌ๋ฅผ ๋์ดํ์ธ์. | |
""" | |
else: | |
combined_system_msg += "[No valid keywords found, skipping WebSearch]\n\n" | |
messages = [] | |
if combined_system_msg.strip(): | |
messages.append({ | |
"role": "system", | |
"content": [{"type": "text", "text": combined_system_msg.strip()}], | |
}) | |
messages.extend(process_history(history)) | |
user_content, user_temp_files = process_new_user_message(message) | |
temp_files.extend(user_temp_files) # ์์ ํ์ผ ์ถ์ | |
for item in user_content: | |
if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS: | |
item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..." | |
messages.append({"role": "user", "content": user_content}) | |
inputs = processor.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
tokenize=True, | |
return_dict=True, | |
return_tensors="pt", | |
).to(device=model.device, dtype=torch.bfloat16) | |
# ์ ๋ ฅ ํ ํฐ ์ ์ ํ ์ถ๊ฐ | |
if inputs.input_ids.shape[1] > MAX_INPUT_LENGTH: | |
inputs.input_ids = inputs.input_ids[:, -MAX_INPUT_LENGTH:] | |
if 'attention_mask' in inputs: | |
inputs.attention_mask = inputs.attention_mask[:, -MAX_INPUT_LENGTH:] | |
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True) | |
gen_kwargs = dict( | |
inputs, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
) | |
t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs) | |
t.start() | |
output = "" | |
for new_text in streamer: | |
output += new_text | |
yield output | |
except Exception as e: | |
logger.error(f"Error in run: {str(e)}") | |
yield f"์ฃ์กํฉ๋๋ค. ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}" | |
finally: | |
# ์์ ํ์ผ ์ญ์ | |
for temp_file in temp_files: | |
try: | |
if os.path.exists(temp_file): | |
os.unlink(temp_file) | |
logger.info(f"Deleted temp file: {temp_file}") | |
except Exception as e: | |
logger.warning(f"Failed to delete temp file {temp_file}: {e}") | |
# ๋ช ์์ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ | |
try: | |
del inputs, streamer | |
except: | |
pass | |
clear_cuda_cache() | |
############################################################################## | |
# ์์๋ค (๋ชจ๋ ์์ด๋ก) | |
############################################################################## | |
examples = [ | |
[ | |
{ | |
"text": "Compare the contents of the two PDF files.", | |
"files": [ | |
"assets/additional-examples/before.pdf", | |
"assets/additional-examples/after.pdf", | |
], | |
} | |
], | |
[ | |
{ | |
"text": "Summarize and analyze the contents of the CSV file.", | |
"files": ["assets/additional-examples/sample-csv.csv"], | |
} | |
], | |
[ | |
{ | |
"text": "Assume the role of a friendly and understanding girlfriend. Describe this video.", | |
"files": ["assets/additional-examples/tmp.mp4"], | |
} | |
], | |
[ | |
{ | |
"text": "Describe the cover and read the text on it.", | |
"files": ["assets/additional-examples/maz.jpg"], | |
} | |
], | |
[ | |
{ | |
"text": "I already have this supplement <image> and I plan to buy this product <image>. Are there any precautions when taking them together?", | |
"files": ["assets/additional-examples/pill1.png", "assets/additional-examples/pill2.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Solve this integral.", | |
"files": ["assets/additional-examples/4.png"], | |
} | |
], | |
[ | |
{ | |
"text": "When was this ticket issued, and what is its price?", | |
"files": ["assets/additional-examples/2.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Based on the sequence of these images, create a short story.", | |
"files": [ | |
"assets/sample-images/09-1.png", | |
"assets/sample-images/09-2.png", | |
"assets/sample-images/09-3.png", | |
"assets/sample-images/09-4.png", | |
"assets/sample-images/09-5.png", | |
], | |
} | |
], | |
[ | |
{ | |
"text": "Write Python code using matplotlib to plot a bar chart that matches this image.", | |
"files": ["assets/additional-examples/barchart.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Read the text in the image and write it out in Markdown format.", | |
"files": ["assets/additional-examples/3.png"], | |
} | |
], | |
[ | |
{ | |
"text": "What does this sign say?", | |
"files": ["assets/sample-images/02.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Compare the two images and describe their similarities and differences.", | |
"files": ["assets/sample-images/03.png"], | |
} | |
], | |
] | |
############################################################################## | |
# Gradio UI (Blocks) ๊ตฌ์ฑ (์ข์ธก ์ฌ์ด๋ ๋ฉ๋ด ์์ด ์ ์ฒดํ๋ฉด ์ฑํ ) | |
############################################################################## | |
css = """ | |
/* 1) UI๋ฅผ ์ฒ์๋ถํฐ ๊ฐ์ฅ ๋๊ฒ (width 100%) ๊ณ ์ ํ์ฌ ํ์ */ | |
.gradio-container { | |
background: rgba(255, 255, 255, 0.7); /* ๋ฐฐ๊ฒฝ ํฌ๋ช ๋ ์ฆ๊ฐ */ | |
padding: 30px 40px; | |
margin: 20px auto; /* ์์๋ ์ฌ๋ฐฑ๋ง ์ ์ง */ | |
width: 100% !important; | |
max-width: none !important; /* 1200px ์ ํ ์ ๊ฑฐ */ | |
} | |
.fillable { | |
width: 100% !important; | |
max-width: 100% !important; | |
} | |
/* 2) ๋ฐฐ๊ฒฝ์ ์์ ํ ํฌ๋ช ํ๊ฒ ๋ณ๊ฒฝ */ | |
body { | |
background: transparent; /* ์์ ํฌ๋ช ๋ฐฐ๊ฒฝ */ | |
margin: 0; | |
padding: 0; | |
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; | |
color: #333; | |
} | |
/* ๋ฒํผ ์์ ์์ ํ ์ ๊ฑฐํ๊ณ ํฌ๋ช ํ๊ฒ */ | |
button, .btn { | |
background: transparent !important; /* ์์ ์์ ํ ์ ๊ฑฐ */ | |
border: 1px solid #ddd; /* ๊ฒฝ๊ณ์ ๋ง ์ด์ง ์ถ๊ฐ */ | |
color: #333; | |
padding: 12px 24px; | |
text-transform: uppercase; | |
font-weight: bold; | |
letter-spacing: 1px; | |
cursor: pointer; | |
} | |
button:hover, .btn:hover { | |
background: rgba(0, 0, 0, 0.05) !important; /* ํธ๋ฒ ์ ์์ฃผ ์ด์ง ์ด๋ก๊ฒ๋ง */ | |
} | |
/* examples ๊ด๋ จ ๋ชจ๋ ์์ ์ ๊ฑฐ */ | |
#examples_container, .examples-container { | |
margin: auto; | |
width: 90%; | |
background: transparent !important; | |
} | |
#examples_row, .examples-row { | |
justify-content: center; | |
background: transparent !important; | |
} | |
/* examples ๋ฒํผ ๋ด๋ถ์ ๋ชจ๋ ์์ ์ ๊ฑฐ */ | |
.gr-samples-table button, | |
.gr-samples-table .gr-button, | |
.gr-samples-table .gr-sample-btn, | |
.gr-examples button, | |
.gr-examples .gr-button, | |
.gr-examples .gr-sample-btn, | |
.examples button, | |
.examples .gr-button, | |
.examples .gr-sample-btn { | |
background: transparent !important; | |
border: 1px solid #ddd; | |
color: #333; | |
} | |
/* examples ๋ฒํผ ํธ๋ฒ ์์๋ ์์ ์๊ฒ */ | |
.gr-samples-table button:hover, | |
.gr-samples-table .gr-button:hover, | |
.gr-samples-table .gr-sample-btn:hover, | |
.gr-examples button:hover, | |
.gr-examples .gr-button:hover, | |
.gr-examples .gr-sample-btn:hover, | |
.examples button:hover, | |
.examples .gr-button:hover, | |
.examples .gr-sample-btn:hover { | |
background: rgba(0, 0, 0, 0.05) !important; | |
} | |
/* ์ฑํ ์ธํฐํ์ด์ค ์์๋ค๋ ํฌ๋ช ํ๊ฒ */ | |
.chatbox, .chatbot, .message { | |
background: transparent !important; | |
} | |
/* ์ ๋ ฅ์ฐฝ ํฌ๋ช ๋ ์กฐ์ */ | |
.multimodal-textbox, textarea, input { | |
background: rgba(255, 255, 255, 0.5) !important; | |
} | |
/* ๋ชจ๋ ์ปจํ ์ด๋ ์์์ ๋ฐฐ๊ฒฝ์ ์ ๊ฑฐ */ | |
.container, .wrap, .box, .panel, .gr-panel { | |
background: transparent !important; | |
} | |
/* ์์ ์น์ ์ ๋ชจ๋ ์์์์ ๋ฐฐ๊ฒฝ์ ์ ๊ฑฐ */ | |
.gr-examples-container, .gr-examples, .gr-sample, .gr-sample-row, .gr-sample-cell { | |
background: transparent !important; | |
} | |
""" | |
title_html = """ | |
<h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;"> ๐ค Gemma3-R1984-4B </h1> | |
<p align="center" style="font-size:1.1em; color:#555;"> | |
โ Agentic AI Platform โ Reasoning & Uncensored โ Multimodal & VLM โ Deep-Research & RAG <br> | |
Operates on an โ 'NVIDIA L40s / A100(ZeroGPU) GPU' as an independent local server, enhancing security and preventing information leakage.<br> | |
@Model Rpository: VIDraft/Gemma-3-R1984-4B, @Based by 'Google Gemma-3-4b', @Powered by 'MOUSE-II'(VIDRAFT) | |
</p> | |
""" | |
with gr.Blocks(css=css, title="Gemma3-R1984-4B") as demo: | |
gr.Markdown(title_html) | |
# Display the web search option (while the system prompt and token slider remain hidden) | |
web_search_checkbox = gr.Checkbox( | |
label="Deep Research", | |
value=False | |
) | |
# Used internally but not visible to the user | |
system_prompt_box = gr.Textbox( | |
lines=3, | |
value="You are a deep thinking AI that may use extremely long chains of thought to thoroughly analyze the problem and deliberate using systematic reasoning processes to arrive at a correct solution before answering.", | |
visible=False # hidden from view | |
) | |
max_tokens_slider = gr.Slider( | |
label="Max New Tokens", | |
minimum=100, | |
maximum=8000, | |
step=50, | |
value=1000, | |
visible=False # hidden from view | |
) | |
web_search_text = gr.Textbox( | |
lines=1, | |
label="(Unused) Web Search Query", | |
placeholder="No direct input needed", | |
visible=False # hidden from view | |
) | |
# Configure the chat interface | |
chat = gr.ChatInterface( | |
fn=run, | |
type="messages", | |
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]), | |
textbox=gr.MultimodalTextbox( | |
file_types=[ | |
".webp", ".png", ".jpg", ".jpeg", ".gif", | |
".mp4", ".csv", ".txt", ".pdf" | |
], | |
file_count="multiple", | |
autofocus=True | |
), | |
multimodal=True, | |
additional_inputs=[ | |
system_prompt_box, | |
max_tokens_slider, | |
web_search_checkbox, | |
web_search_text, | |
], | |
stop_btn=False, | |
title='<a href="https://discord.gg/openfreeai" target="_blank">https://discord.gg/openfreeai</a>', | |
examples=examples, | |
run_examples_on_click=False, | |
cache_examples=False, | |
css_paths=None, | |
delete_cache=(1800, 1800), | |
) | |
# Example section - since examples are already set in ChatInterface, this is for display only | |
with gr.Row(elem_id="examples_row"): | |
with gr.Column(scale=12, elem_id="examples_container"): | |
gr.Markdown("### Example Inputs (click to load)") | |
if __name__ == "__main__": | |
# Run locally | |
demo.launch() | |