Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,11 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
|
4 |
-
import spaces
|
5 |
import torch
|
6 |
import spaces
|
7 |
import random
|
8 |
-
|
9 |
from diffusers import AutoPipelineForText2Image
|
10 |
from PIL import Image
|
11 |
|
12 |
-
|
13 |
MAX_SEED = np.iinfo(np.int32).max
|
14 |
MAX_IMAGE_SIZE = 2048
|
15 |
|
@@ -19,47 +15,9 @@ pipe = AutoPipelineForText2Image.from_pretrained(
|
|
19 |
torch_dtype=torch.bfloat16,
|
20 |
).to("cuda")
|
21 |
|
22 |
-
# def calculate_optimal_dimensions(image: Image.Image):
|
23 |
-
# # Extract the original dimensions
|
24 |
-
# original_width, original_height = image.size
|
25 |
-
|
26 |
-
# # Set constants
|
27 |
-
# MIN_ASPECT_RATIO = 9 / 16
|
28 |
-
# MAX_ASPECT_RATIO = 16 / 9
|
29 |
-
# FIXED_DIMENSION = 1024
|
30 |
-
|
31 |
-
# # Calculate the aspect ratio of the original image
|
32 |
-
# original_aspect_ratio = original_width / original_height
|
33 |
-
|
34 |
-
# # Determine which dimension to fix
|
35 |
-
# if original_aspect_ratio > 1: # Wider than tall
|
36 |
-
# width = FIXED_DIMENSION
|
37 |
-
# height = round(FIXED_DIMENSION / original_aspect_ratio)
|
38 |
-
# else: # Taller than wide
|
39 |
-
# height = FIXED_DIMENSION
|
40 |
-
# width = round(FIXED_DIMENSION * original_aspect_ratio)
|
41 |
-
|
42 |
-
# # Ensure dimensions are multiples of 8
|
43 |
-
# width = (width // 8) * 8
|
44 |
-
# height = (height // 8) * 8
|
45 |
-
|
46 |
-
# # Enforce aspect ratio limits
|
47 |
-
# calculated_aspect_ratio = width / height
|
48 |
-
# if calculated_aspect_ratio > MAX_ASPECT_RATIO:
|
49 |
-
# width = (height * MAX_ASPECT_RATIO // 8) * 8
|
50 |
-
# elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
|
51 |
-
# height = (width / MIN_ASPECT_RATIO // 8) * 8
|
52 |
-
|
53 |
-
# # Ensure width and height remain above the minimum dimensions
|
54 |
-
# width = max(width, 576) if width == FIXED_DIMENSION else width
|
55 |
-
# height = max(height, 576) if height == FIXED_DIMENSION else height
|
56 |
-
|
57 |
-
# return width, height
|
58 |
-
|
59 |
@spaces.GPU
|
60 |
-
def infer(edit_images, prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5,control_strength=0.5, control_stop=0.33, num_inference_steps=50, progress=gr.Progress(track_tqdm=True)):
|
61 |
image = edit_images["background"].convert("RGB")
|
62 |
-
# width, height = calculate_optimal_dimensions(image)
|
63 |
mask = edit_images["layers"][0].convert("RGB")
|
64 |
if randomize_seed:
|
65 |
seed = random.randint(0, MAX_SEED)
|
@@ -76,80 +34,328 @@ def infer(edit_images, prompt, seed=42, randomize_seed=False, width=1024, height
|
|
76 |
generator=torch.Generator("cpu").manual_seed(seed)
|
77 |
).images[0]
|
78 |
return (image, out_image), seed
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
examples = [
|
81 |
"a tiny astronaut hatching from an egg on the moon",
|
82 |
"a cat holding a sign that says hello world",
|
83 |
"an anime illustration of a wiener schnitzel",
|
84 |
]
|
85 |
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
#col-container {
|
88 |
margin: 0 auto;
|
89 |
-
max-width:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
}
|
91 |
"""
|
92 |
|
93 |
-
with gr.Blocks(css=css) as demo:
|
94 |
-
|
95 |
with gr.Column(elem_id="col-container"):
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
type='pil',
|
106 |
-
sources=["upload", "webcam"],
|
107 |
-
image_mode='RGB',
|
108 |
-
layers=False,
|
109 |
-
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"),
|
110 |
-
height=600
|
111 |
-
)
|
112 |
-
prompt = gr.Text(
|
113 |
-
label="Prompt",
|
114 |
-
show_label=False,
|
115 |
-
max_lines=1,
|
116 |
-
placeholder="Enter your prompt",
|
117 |
-
container=False,
|
118 |
-
)
|
119 |
-
run_button = gr.Button("Run")
|
120 |
-
|
121 |
-
result = gr.ImageSlider(label="Generated Image", type="pil", image_mode='RGB')
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
seed = gr.Slider(
|
126 |
-
label="Seed",
|
127 |
-
minimum=0,
|
128 |
-
maximum=MAX_SEED,
|
129 |
-
step=1,
|
130 |
-
value=0,
|
131 |
-
)
|
132 |
-
|
133 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
134 |
-
|
135 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
|
|
147 |
run_button.click(
|
148 |
-
fn
|
149 |
-
inputs
|
150 |
-
outputs
|
151 |
)
|
152 |
|
153 |
-
|
154 |
-
|
155 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
|
|
|
|
3 |
import torch
|
4 |
import spaces
|
5 |
import random
|
|
|
6 |
from diffusers import AutoPipelineForText2Image
|
7 |
from PIL import Image
|
8 |
|
|
|
9 |
MAX_SEED = np.iinfo(np.int32).max
|
10 |
MAX_IMAGE_SIZE = 2048
|
11 |
|
|
|
15 |
torch_dtype=torch.bfloat16,
|
16 |
).to("cuda")
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
@spaces.GPU
|
19 |
+
def infer(edit_images, prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, control_strength=0.5, control_stop=0.33, num_inference_steps=50, progress=gr.Progress(track_tqdm=True)):
|
20 |
image = edit_images["background"].convert("RGB")
|
|
|
21 |
mask = edit_images["layers"][0].convert("RGB")
|
22 |
if randomize_seed:
|
23 |
seed = random.randint(0, MAX_SEED)
|
|
|
34 |
generator=torch.Generator("cpu").manual_seed(seed)
|
35 |
).images[0]
|
36 |
return (image, out_image), seed
|
37 |
+
|
38 |
+
def create_example_card(example):
|
39 |
+
return f"""
|
40 |
+
<div class="example-card">
|
41 |
+
<p>{example}</p>
|
42 |
+
</div>
|
43 |
+
"""
|
44 |
+
|
45 |
examples = [
|
46 |
"a tiny astronaut hatching from an egg on the moon",
|
47 |
"a cat holding a sign that says hello world",
|
48 |
"an anime illustration of a wiener schnitzel",
|
49 |
]
|
50 |
|
51 |
+
example_html = "".join([create_example_card(ex) for ex in examples])
|
52 |
+
|
53 |
+
css = """
|
54 |
+
:root {
|
55 |
+
--primary-color: #7E57C2;
|
56 |
+
--secondary-color: #5E35B1;
|
57 |
+
--accent-color: #B39DDB;
|
58 |
+
--background-color: #F5F5F7;
|
59 |
+
--card-background: #FFFFFF;
|
60 |
+
--text-color: #333333;
|
61 |
+
--shadow: 0 4px 12px rgba(0, 0, 0, 0.08);
|
62 |
+
--radius: 12px;
|
63 |
+
}
|
64 |
+
|
65 |
+
body {
|
66 |
+
font-family: 'Inter', system-ui, sans-serif;
|
67 |
+
background-color: var(--background-color);
|
68 |
+
}
|
69 |
+
|
70 |
#col-container {
|
71 |
margin: 0 auto;
|
72 |
+
max-width: 1200px;
|
73 |
+
padding: 0;
|
74 |
+
}
|
75 |
+
|
76 |
+
.container {
|
77 |
+
background-color: var(--card-background);
|
78 |
+
border-radius: var(--radius);
|
79 |
+
box-shadow: var(--shadow);
|
80 |
+
padding: 24px;
|
81 |
+
margin-bottom: 24px;
|
82 |
+
}
|
83 |
+
|
84 |
+
.header-container {
|
85 |
+
background: linear-gradient(135deg, var(--primary-color), var(--secondary-color));
|
86 |
+
border-radius: var(--radius);
|
87 |
+
padding: 32px;
|
88 |
+
margin-bottom: 24px;
|
89 |
+
color: white;
|
90 |
+
text-align: center;
|
91 |
+
box-shadow: var(--shadow);
|
92 |
+
}
|
93 |
+
|
94 |
+
.header-container h1 {
|
95 |
+
font-weight: 700;
|
96 |
+
font-size: 2.5rem;
|
97 |
+
margin-bottom: 8px;
|
98 |
+
background: linear-gradient(to right, #ffffff, #e0e0e0);
|
99 |
+
-webkit-background-clip: text;
|
100 |
+
background-clip: text;
|
101 |
+
-webkit-text-fill-color: transparent;
|
102 |
+
}
|
103 |
+
|
104 |
+
.header-container p {
|
105 |
+
font-size: 1.1rem;
|
106 |
+
opacity: 0.92;
|
107 |
+
margin-bottom: 16px;
|
108 |
+
}
|
109 |
+
|
110 |
+
.header-container a {
|
111 |
+
color: var(--accent-color);
|
112 |
+
text-decoration: underline;
|
113 |
+
transition: opacity 0.2s;
|
114 |
+
}
|
115 |
+
|
116 |
+
.header-container a:hover {
|
117 |
+
opacity: 0.8;
|
118 |
+
}
|
119 |
+
|
120 |
+
.btn-primary {
|
121 |
+
background: linear-gradient(90deg, var(--primary-color), var(--secondary-color));
|
122 |
+
border: none;
|
123 |
+
border-radius: 8px;
|
124 |
+
color: white;
|
125 |
+
font-weight: 600;
|
126 |
+
padding: 12px 24px;
|
127 |
+
font-size: 16px;
|
128 |
+
cursor: pointer;
|
129 |
+
transition: all 0.3s ease;
|
130 |
+
box-shadow: 0 4px 12px rgba(126, 87, 194, 0.3);
|
131 |
+
}
|
132 |
+
|
133 |
+
.btn-primary:hover {
|
134 |
+
transform: translateY(-2px);
|
135 |
+
box-shadow: 0 6px 16px rgba(126, 87, 194, 0.4);
|
136 |
+
}
|
137 |
+
|
138 |
+
.image-editor-container {
|
139 |
+
border-radius: var(--radius);
|
140 |
+
overflow: hidden;
|
141 |
+
box-shadow: var(--shadow);
|
142 |
+
}
|
143 |
+
|
144 |
+
.prompt-container {
|
145 |
+
background-color: var(--card-background);
|
146 |
+
border-radius: var(--radius);
|
147 |
+
padding: 16px;
|
148 |
+
box-shadow: var(--shadow);
|
149 |
+
margin-top: 16px;
|
150 |
+
}
|
151 |
+
|
152 |
+
.result-container {
|
153 |
+
border-radius: var(--radius);
|
154 |
+
overflow: hidden;
|
155 |
+
box-shadow: var(--shadow);
|
156 |
+
}
|
157 |
+
|
158 |
+
.settings-container {
|
159 |
+
background-color: var(--card-background);
|
160 |
+
border-radius: var(--radius);
|
161 |
+
padding: 20px;
|
162 |
+
box-shadow: var(--shadow);
|
163 |
+
margin-top: 16px;
|
164 |
+
}
|
165 |
+
|
166 |
+
.example-section {
|
167 |
+
background-color: var(--card-background);
|
168 |
+
border-radius: var(--radius);
|
169 |
+
padding: 20px;
|
170 |
+
box-shadow: var(--shadow);
|
171 |
+
margin-top: 24px;
|
172 |
+
}
|
173 |
+
|
174 |
+
.example-section h3 {
|
175 |
+
font-size: 1.3rem;
|
176 |
+
font-weight: 600;
|
177 |
+
margin-bottom: 16px;
|
178 |
+
color: var(--primary-color);
|
179 |
+
}
|
180 |
+
|
181 |
+
.examples-grid {
|
182 |
+
display: flex;
|
183 |
+
flex-wrap: wrap;
|
184 |
+
gap: 12px;
|
185 |
+
}
|
186 |
+
|
187 |
+
.example-card {
|
188 |
+
background: linear-gradient(135deg, #f3f3f7, #ffffff);
|
189 |
+
border-radius: 8px;
|
190 |
+
padding: 16px;
|
191 |
+
cursor: pointer;
|
192 |
+
transition: all 0.2s ease;
|
193 |
+
border: 1px solid #e0e0e0;
|
194 |
+
flex: 1;
|
195 |
+
min-width: 200px;
|
196 |
+
}
|
197 |
+
|
198 |
+
.example-card:hover {
|
199 |
+
transform: translateY(-2px);
|
200 |
+
box-shadow: var(--shadow);
|
201 |
+
border-color: var(--accent-color);
|
202 |
+
}
|
203 |
+
|
204 |
+
.example-card p {
|
205 |
+
margin: 0;
|
206 |
+
font-size: 14px;
|
207 |
+
color: var(--text-color);
|
208 |
+
}
|
209 |
+
|
210 |
+
.accordion-header {
|
211 |
+
font-weight: 600;
|
212 |
+
color: var(--primary-color);
|
213 |
+
}
|
214 |
+
|
215 |
+
/* Custom slider styling */
|
216 |
+
input[type="range"] {
|
217 |
+
height: 6px;
|
218 |
+
border-radius: 3px;
|
219 |
+
background: linear-gradient(90deg, var(--primary-color), var(--secondary-color));
|
220 |
+
}
|
221 |
+
|
222 |
+
input[type="range"]::-webkit-slider-thumb {
|
223 |
+
background: var(--primary-color);
|
224 |
+
border: 2px solid white;
|
225 |
+
height: 18px;
|
226 |
+
width: 18px;
|
227 |
+
}
|
228 |
+
|
229 |
+
.footer {
|
230 |
+
text-align: center;
|
231 |
+
padding: 24px;
|
232 |
+
color: #777;
|
233 |
+
font-size: 14px;
|
234 |
+
}
|
235 |
+
|
236 |
+
/* Animate the result transition */
|
237 |
+
@keyframes fadeIn {
|
238 |
+
from { opacity: 0; }
|
239 |
+
to { opacity: 1; }
|
240 |
+
}
|
241 |
+
|
242 |
+
.result-animation {
|
243 |
+
animation: fadeIn 0.5s ease-in-out;
|
244 |
+
}
|
245 |
+
|
246 |
+
/* Responsive adjustments */
|
247 |
+
@media (max-width: 768px) {
|
248 |
+
.examples-grid {
|
249 |
+
flex-direction: column;
|
250 |
+
}
|
251 |
}
|
252 |
"""
|
253 |
|
254 |
+
with gr.Blocks(css=css, theme=gr.themes.Monochrome()) as demo:
|
|
|
255 |
with gr.Column(elem_id="col-container"):
|
256 |
+
# Header with gradient
|
257 |
+
with gr.Column(elem_classes=["header-container"]):
|
258 |
+
gr.HTML("""
|
259 |
+
<h1>Flex.2 Preview - Inpaint</h1>
|
260 |
+
<p>Advanced 8B parameter Text to Image Diffusion Model with universal control and built-in inpainting support</p>
|
261 |
+
<p>Created by <a href="https://huggingface.co/ostris" target="_blank">ostris</a> |
|
262 |
+
<a href="https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md" target="_blank">apache-2.0 license</a> |
|
263 |
+
<a href="https://huggingface.co/ostris/Flex.2-preview" target="_blank">model</a></p>
|
264 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
266 |
+
# Main interface container
|
267 |
+
with gr.Column(elem_classes=["container"]):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
with gr.Row():
|
269 |
+
# Left column: Input
|
270 |
+
with gr.Column(scale=1):
|
271 |
+
with gr.Column(elem_classes=["image-editor-container"]):
|
272 |
+
edit_image = gr.ImageEditor(
|
273 |
+
label='Upload and draw mask for inpainting',
|
274 |
+
type='pil',
|
275 |
+
sources=["upload", "webcam"],
|
276 |
+
image_mode='RGB',
|
277 |
+
layers=False,
|
278 |
+
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"),
|
279 |
+
height=500
|
280 |
+
)
|
281 |
+
|
282 |
+
with gr.Column(elem_classes=["prompt-container"]):
|
283 |
+
prompt = gr.Text(
|
284 |
+
label="Your creative prompt",
|
285 |
+
show_label=True,
|
286 |
+
max_lines=1,
|
287 |
+
placeholder="Describe what you want to generate...",
|
288 |
+
container=True,
|
289 |
+
)
|
290 |
+
|
291 |
+
run_button = gr.Button("✨ Generate", elem_classes=["btn-primary"])
|
292 |
|
293 |
+
# Right column: Output
|
294 |
+
with gr.Column(scale=1, elem_classes=["result-container"]):
|
295 |
+
result = gr.ImageSlider(
|
296 |
+
label="Before & After",
|
297 |
+
type="pil",
|
298 |
+
image_mode='RGB',
|
299 |
+
elem_classes=["result-animation"]
|
300 |
+
)
|
301 |
+
|
302 |
+
# Advanced settings in a nice container
|
303 |
+
with gr.Column(elem_classes=["settings-container"]):
|
304 |
+
with gr.Accordion("Advanced Settings", open=False, elem_classes=["accordion-header"]):
|
305 |
+
with gr.Column():
|
306 |
+
with gr.Row():
|
307 |
+
seed = gr.Slider(
|
308 |
+
label="Seed",
|
309 |
+
minimum=0,
|
310 |
+
maximum=MAX_SEED,
|
311 |
+
step=1,
|
312 |
+
value=0,
|
313 |
+
)
|
314 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
315 |
+
|
316 |
+
with gr.Row():
|
317 |
+
height = gr.Slider(64, 2048, value=512, step=64, label="Height")
|
318 |
+
width = gr.Slider(64, 2048, value=512, step=64, label="Width")
|
319 |
+
|
320 |
+
with gr.Row():
|
321 |
+
guidance_scale = gr.Slider(0.0, 20.0, value=3.5, step=0.1, label="Guidance Scale")
|
322 |
+
control_strength = gr.Slider(0.0, 1.0, value=0.5, step=0.05, label="Control Strength")
|
323 |
+
|
324 |
+
with gr.Row():
|
325 |
+
control_stop = gr.Slider(0.0, 1.0, value=0.33, step=0.05, label="Control Stop")
|
326 |
+
num_inference_steps = gr.Slider(1, 100, value=50, step=1, label="Inference Steps")
|
327 |
+
|
328 |
+
# Example prompts section
|
329 |
+
with gr.Column(elem_classes=["example-section"]):
|
330 |
+
gr.HTML(f"""
|
331 |
+
<h3>Try these example prompts:</h3>
|
332 |
+
<div class="examples-grid">
|
333 |
+
{example_html}
|
334 |
+
</div>
|
335 |
+
""")
|
336 |
|
337 |
+
# Example functionality
|
338 |
+
for i, example in enumerate(examples):
|
339 |
+
gr.HTML(f"""
|
340 |
+
<script>
|
341 |
+
document.querySelectorAll('.example-card')[{i}].addEventListener('click', function() {{
|
342 |
+
document.querySelector('textarea').value = "{example}";
|
343 |
+
}});
|
344 |
+
</script>
|
345 |
+
""")
|
346 |
+
|
347 |
+
# Footer
|
348 |
+
gr.HTML("""
|
349 |
+
<div class="footer">
|
350 |
+
<p>Powered by Gradio • Flex.2 Preview Inpainting Demo</p>
|
351 |
+
</div>
|
352 |
+
""")
|
353 |
|
354 |
+
# Handle examples click to populate prompt
|
355 |
run_button.click(
|
356 |
+
fn=infer,
|
357 |
+
inputs=[edit_image, prompt, seed, randomize_seed, width, height, guidance_scale, control_strength, control_stop, num_inference_steps],
|
358 |
+
outputs=[result, seed]
|
359 |
)
|
360 |
|
|
|
|
|
361 |
demo.launch()
|