Clean previous upload to try new sample
Browse files
app.py
CHANGED
|
@@ -58,70 +58,74 @@ st.caption("So, for this project have downloaded the pre-trained model [ybelkada
|
|
| 58 |
st.caption("For more detail: [Github link](https://github.com/SmithaUpadhyaya/fashion_image_caption)") #write
|
| 59 |
|
| 60 |
#Select few sample images for the catagory of cloths
|
| 61 |
-
st.
|
| 62 |
-
option = st.selectbox('From sample', ('None', 'dress', 'earrings', 'sweater', 'sunglasses', 'shoe', 'hat', 'heels', 'socks', 'tee', 'bracelet'), index = 0)
|
| 63 |
-
st.text("Or")
|
| 64 |
-
file_name = st.file_uploader(label = "Upload an image", accept_multiple_files = False)
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
btn_click = st.button('Generate')
|
| 68 |
-
st.caption("Application deployed on CPU basic with 16GB RAM")
|
| 69 |
|
| 70 |
-
|
|
|
|
| 71 |
|
| 72 |
-
if
|
| 73 |
|
| 74 |
-
image =
|
|
|
|
| 75 |
|
| 76 |
-
|
| 77 |
|
| 78 |
-
|
| 79 |
-
image = Image.open(file_name)
|
| 80 |
|
| 81 |
-
|
|
|
|
| 82 |
|
| 83 |
-
|
| 84 |
-
image_col.header("Image")
|
| 85 |
-
caption_text.header("Generated Caption")
|
| 86 |
-
image_col.image(image.resize((252,252)), use_column_width = True)
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
st.session_state.init_model_required = init_model_required
|
| 97 |
-
st.session_state.processor = processor
|
| 98 |
-
st.session_state.model = model
|
| 99 |
-
else:
|
| 100 |
-
processor = st.session_state.processor
|
| 101 |
-
model = st.session_state.model
|
| 102 |
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
-
|
| 106 |
-
#Inferance on GPU. When used this on GPU will get errors like: "slow_conv2d_cpu" not implemented for 'Half'" , " Input type (float) and bias type (struct c10::Half)"
|
| 107 |
-
#inputs = processor(images = image, return_tensors = "pt").to('cuda', torch.float16)
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
|
|
|
| 111 |
|
| 112 |
-
|
|
|
|
| 113 |
|
| 114 |
-
|
| 115 |
-
generated_ids = model.generate(pixel_values = pixel_values, max_length = 25)
|
| 116 |
-
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens = True)[0]
|
| 117 |
|
| 118 |
-
|
| 119 |
-
|
|
|
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
file_name = None
|
| 125 |
|
| 126 |
#if __name__ == "__main__":
|
| 127 |
# main()
|
|
|
|
| 58 |
st.caption("For more detail: [Github link](https://github.com/SmithaUpadhyaya/fashion_image_caption)") #write
|
| 59 |
|
| 60 |
#Select few sample images for the catagory of cloths
|
| 61 |
+
with st.form("app", clear_on_submit = True):
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
st.caption("Select image:")
|
| 64 |
+
|
| 65 |
+
option = 'None'
|
| 66 |
+
option = st.selectbox('From sample', ('None', 'dress', 'earrings', 'sweater', 'sunglasses', 'shoe', 'hat', 'heels', 'socks', 'tee', 'bracelet'), index = 0)
|
| 67 |
+
|
| 68 |
+
st.text("Or")
|
| 69 |
+
|
| 70 |
+
file_name = None
|
| 71 |
+
file_name = st.file_uploader(label = "Upload an image", accept_multiple_files = False)
|
| 72 |
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
btn_click = st.form_submit_button('Generate')
|
| 75 |
+
st.caption("Application deployed on CPU basic with 16GB RAM")
|
| 76 |
|
| 77 |
+
if btn_click:
|
| 78 |
|
| 79 |
+
image = None
|
| 80 |
+
if file_name is not None:
|
| 81 |
|
| 82 |
+
image = Image.open(file_name)
|
| 83 |
|
| 84 |
+
elif option is not 'None':
|
|
|
|
| 85 |
|
| 86 |
+
file_name = os.path.join(sample_img_path, map_sampleid_name[option])
|
| 87 |
+
image = Image.open(file_name)
|
| 88 |
|
| 89 |
+
if image is not None:
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
+
image_col, caption_text = st.columns(2)
|
| 92 |
+
image_col.header("Image")
|
| 93 |
+
caption_text.header("Generated Caption")
|
| 94 |
+
image_col.image(image.resize((252,252)), use_column_width = True)
|
| 95 |
|
| 96 |
+
if 'init_model_required' not in st.session_state:
|
| 97 |
+
with st.spinner('Initializing model...'):
|
| 98 |
|
| 99 |
+
init_model_required = True
|
| 100 |
+
processor, model, init_model_required = init_model(init_model_required)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
+
#Save session init model in session state
|
| 103 |
+
if 'init_model_required' not in st.session_state:
|
| 104 |
+
st.session_state.init_model_required = init_model_required
|
| 105 |
+
st.session_state.processor = processor
|
| 106 |
+
st.session_state.model = model
|
| 107 |
+
else:
|
| 108 |
+
processor = st.session_state.processor
|
| 109 |
+
model = st.session_state.model
|
| 110 |
|
| 111 |
+
with st.spinner('Generating Caption...'):
|
|
|
|
|
|
|
| 112 |
|
| 113 |
+
#Preprocess the image
|
| 114 |
+
#Inferance on GPU. When used this on GPU will get errors like: "slow_conv2d_cpu" not implemented for 'Half'" , " Input type (float) and bias type (struct c10::Half)"
|
| 115 |
+
#inputs = processor(images = image, return_tensors = "pt").to('cuda', torch.float16)
|
| 116 |
|
| 117 |
+
#Inferance on CPU
|
| 118 |
+
inputs = processor(images = image, return_tensors = "pt")
|
| 119 |
|
| 120 |
+
pixel_values = inputs.pixel_values
|
|
|
|
|
|
|
| 121 |
|
| 122 |
+
#Predict the caption for the imahe
|
| 123 |
+
generated_ids = model.generate(pixel_values = pixel_values, max_length = 25)
|
| 124 |
+
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens = True)[0]
|
| 125 |
|
| 126 |
+
#Output the predict text
|
| 127 |
+
caption_text.text(generated_caption)
|
| 128 |
+
|
|
|
|
| 129 |
|
| 130 |
#if __name__ == "__main__":
|
| 131 |
# main()
|