|
import gradio as gr |
|
import os |
|
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, Settings |
|
from llama_index.llms.openai import OpenAI |
|
|
|
|
|
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY") |
|
|
|
|
|
Settings.llm = OpenAI(model="gpt-4.1-nano") |
|
|
|
|
|
documents = SimpleDirectoryReader("documents").load_data() |
|
index = VectorStoreIndex.from_documents(documents) |
|
|
|
|
|
query_engine = index.as_query_engine() |
|
|
|
def chatbot_response(message): |
|
response = query_engine.query(message) |
|
return str(response) |
|
|
|
|
|
|
|
|
|
|
|
|
|
iface = gr.Interface(fn=chatbot_response, |
|
inputs="text", |
|
outputs="text", |
|
title="Ask about me", |
|
description="Ask questions and receive answers based on my bio.", |
|
|
|
examples=[["Provide a summary of Donald?"], |
|
["Has Donald worked with Python?"], |
|
["Tell me something interesting about Donald"]] |
|
) |
|
|
|
iface.launch() |