import os from transformers import AutoModel, AutoTokenizer import torch # Load model and tokenizer model_name = "ucaslcl/GOT-OCR2_0" tokenizer = AutoTokenizer.from_pretrained( model_name, trust_remote_code=True, return_tensors='pt' ) # Load the model model = AutoModel.from_pretrained( model_name, trust_remote_code=True, low_cpu_mem_usage=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id, ) # Ensure the model is in evaluation mode and loaded on CPU device = torch.device("cpu") dtype = torch.float32 # Use float32 on CPU model = model.eval().to(device) # OCR function def extract_text_got(uploaded_file): """Use GOT-OCR2.0 model to extract text from the uploaded image.""" try: temp_file_path = 'temp_image.jpg' with open(temp_file_path, 'wb') as temp_file: temp_file.write(uploaded_file.read()) # Save file # OCR attempts ocr_types = ['ocr', 'format'] fine_grained_options = ['ocr', 'format'] color_options = ['red', 'green', 'blue'] box = [10, 10, 100, 100] # Example box for demonstration multi_crop_types = ['ocr', 'format'] results = [] # Run the model without autocast (not necessary for CPU) for ocr_type in ocr_types: with torch.no_grad(): outputs = model.chat( tokenizer, temp_file_path, ocr_type=ocr_type ) if isinstance(outputs, list) and outputs[0].strip(): return outputs[0].strip() # Return if successful results.append(outputs[0].strip() if outputs else "No result") # Try FINE-GRAINED OCR with box options for ocr_type in fine_grained_options: with torch.no_grad(): outputs = model.chat( tokenizer, temp_file_path, ocr_type=ocr_type, ocr_box=box ) if isinstance(outputs, list) and outputs[0].strip(): return outputs[0].strip() # Return if successful results.append(outputs[0].strip() if outputs else "No result") # Try FINE-GRAINED OCR with color options for ocr_type in fine_grained_options: for color in color_options: with torch.no_grad(): outputs = model.chat( tokenizer, temp_file_path, ocr_type=ocr_type, ocr_color=color ) if isinstance(outputs, list) and outputs[0].strip(): return outputs[0].strip() # Return if successful results.append(outputs[0].strip() if outputs else "No result") # Try MULTI-CROP OCR for ocr_type in multi_crop_types: with torch.no_grad(): outputs = model.chat_crop( tokenizer, temp_file_path, ocr_type=ocr_type ) if isinstance(outputs, list) and outputs[0].strip(): return outputs[0].strip() # Return if successful results.append(outputs[0].strip() if outputs else "No result") # If no text was extracted if all(not text for text in results): return "No text extracted." else: return "\n".join(results) except Exception as e: return f"Error during text extraction: {str(e)}" finally: if os.path.exists(temp_file_path): os.remove(temp_file_path)