Spaces:
Running
Running
UniquePratham
commited on
Commit
•
6bb168e
1
Parent(s):
19b1a60
Update ocr_cpu.py
Browse files- ocr_cpu.py +98 -97
ocr_cpu.py
CHANGED
@@ -1,97 +1,98 @@
|
|
1 |
-
import os
|
2 |
-
from transformers import AutoModel, AutoTokenizer
|
3 |
-
import torch
|
4 |
-
|
5 |
-
# Load model and tokenizer
|
6 |
-
model_name = "ucaslcl/GOT-OCR2_0"
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
1 |
+
import os
|
2 |
+
from transformers import AutoModel, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load model and tokenizer
|
6 |
+
# model_name = "ucaslcl/GOT-OCR2_0"
|
7 |
+
model_name = "srimanth-d/GOT_CPU"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
9 |
+
model_name, trust_remote_code=True, return_tensors='pt'
|
10 |
+
)
|
11 |
+
|
12 |
+
# Load the model
|
13 |
+
model = AutoModel.from_pretrained(
|
14 |
+
model_name,
|
15 |
+
trust_remote_code=True,
|
16 |
+
low_cpu_mem_usage=True,
|
17 |
+
use_safetensors=True,
|
18 |
+
pad_token_id=tokenizer.eos_token_id,
|
19 |
+
)
|
20 |
+
|
21 |
+
# Ensure the model is in evaluation mode and loaded on CPU
|
22 |
+
device = torch.device("cpu")
|
23 |
+
dtype = torch.float32 # Use float32 on CPU
|
24 |
+
model = model.eval()
|
25 |
+
|
26 |
+
# OCR function
|
27 |
+
|
28 |
+
|
29 |
+
def extract_text_got(uploaded_file):
|
30 |
+
"""Use GOT-OCR2.0 model to extract text from the uploaded image."""
|
31 |
+
try:
|
32 |
+
temp_file_path = 'temp_image.jpg'
|
33 |
+
with open(temp_file_path, 'wb') as temp_file:
|
34 |
+
temp_file.write(uploaded_file.read()) # Save file
|
35 |
+
|
36 |
+
# OCR attempts
|
37 |
+
ocr_types = ['ocr', 'format']
|
38 |
+
fine_grained_options = ['ocr', 'format']
|
39 |
+
color_options = ['red', 'green', 'blue']
|
40 |
+
box = [10, 10, 100, 100] # Example box for demonstration
|
41 |
+
multi_crop_types = ['ocr', 'format']
|
42 |
+
|
43 |
+
results = []
|
44 |
+
|
45 |
+
# Run the model without autocast (not necessary for CPU)
|
46 |
+
for ocr_type in ocr_types:
|
47 |
+
with torch.no_grad():
|
48 |
+
outputs = model.chat(
|
49 |
+
tokenizer, temp_file_path, ocr_type=ocr_type
|
50 |
+
)
|
51 |
+
if isinstance(outputs, list) and outputs[0].strip():
|
52 |
+
return outputs[0].strip() # Return if successful
|
53 |
+
results.append(outputs[0].strip() if outputs else "No result")
|
54 |
+
|
55 |
+
# Try FINE-GRAINED OCR with box options
|
56 |
+
for ocr_type in fine_grained_options:
|
57 |
+
with torch.no_grad():
|
58 |
+
outputs = model.chat(
|
59 |
+
tokenizer, temp_file_path, ocr_type=ocr_type, ocr_box=box
|
60 |
+
)
|
61 |
+
if isinstance(outputs, list) and outputs[0].strip():
|
62 |
+
return outputs[0].strip() # Return if successful
|
63 |
+
results.append(outputs[0].strip() if outputs else "No result")
|
64 |
+
|
65 |
+
# Try FINE-GRAINED OCR with color options
|
66 |
+
for ocr_type in fine_grained_options:
|
67 |
+
for color in color_options:
|
68 |
+
with torch.no_grad():
|
69 |
+
outputs = model.chat(
|
70 |
+
tokenizer, temp_file_path, ocr_type=ocr_type, ocr_color=color
|
71 |
+
)
|
72 |
+
if isinstance(outputs, list) and outputs[0].strip():
|
73 |
+
return outputs[0].strip() # Return if successful
|
74 |
+
results.append(outputs[0].strip()
|
75 |
+
if outputs else "No result")
|
76 |
+
|
77 |
+
# Try MULTI-CROP OCR
|
78 |
+
for ocr_type in multi_crop_types:
|
79 |
+
with torch.no_grad():
|
80 |
+
outputs = model.chat_crop(
|
81 |
+
tokenizer, temp_file_path, ocr_type=ocr_type
|
82 |
+
)
|
83 |
+
if isinstance(outputs, list) and outputs[0].strip():
|
84 |
+
return outputs[0].strip() # Return if successful
|
85 |
+
results.append(outputs[0].strip() if outputs else "No result")
|
86 |
+
|
87 |
+
# If no text was extracted
|
88 |
+
if all(not text for text in results):
|
89 |
+
return "No text extracted."
|
90 |
+
else:
|
91 |
+
return "\n".join(results)
|
92 |
+
|
93 |
+
except Exception as e:
|
94 |
+
return f"Error during text extraction: {str(e)}"
|
95 |
+
|
96 |
+
finally:
|
97 |
+
if os.path.exists(temp_file_path):
|
98 |
+
os.remove(temp_file_path)
|