Spaces:
Sleeping
Sleeping
| import os | |
| from transformers import AutoModel, AutoTokenizer | |
| import torch | |
| import re | |
| # Load model and tokenizer | |
| model_name = "srimanth-d/GOT_CPU" # Using GOT model on CPU | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, return_tensors='pt') | |
| # Load the model | |
| model = AutoModel.from_pretrained( | |
| model_name, | |
| trust_remote_code=True, | |
| low_cpu_mem_usage=True, | |
| use_safetensors=True, | |
| pad_token_id=tokenizer.eos_token_id, | |
| ) | |
| # Ensure the model is in evaluation mode and loaded on CPU | |
| device = torch.device("cpu") | |
| model = model.eval() | |
| # OCR function to extract text | |
| def extract_text_got(uploaded_file): | |
| """Use GOT-OCR2.0 model to extract text from the uploaded image.""" | |
| temp_file_path = 'temp_image.jpg' | |
| try: | |
| # Save the uploaded file temporarily | |
| with open(temp_file_path, 'wb') as temp_file: | |
| temp_file.write(uploaded_file.read()) | |
| print(f"Processing image from path: {temp_file_path}") | |
| ocr_types = ['ocr', 'format'] | |
| results = [] | |
| # Run OCR on the image | |
| for ocr_type in ocr_types: | |
| with torch.no_grad(): | |
| print(f"Running OCR with type: {ocr_type}") | |
| outputs = model.chat(tokenizer, temp_file_path, ocr_type=ocr_type) | |
| if isinstance(outputs, list) and outputs[0].strip(): | |
| return outputs[0].strip() # Return the result if successful | |
| results.append(outputs[0].strip() if outputs else "No result") | |
| # Combine results or return no text found message | |
| return results[0] if results else "No text extracted." | |
| except Exception as e: | |
| return f"Error during text extraction: {str(e)}" | |
| finally: | |
| # Clean up temporary file | |
| if os.path.exists(temp_file_path): | |
| os.remove(temp_file_path) | |
| print(f"Temporary file {temp_file_path} removed.") | |
| # Function to clean extracted text (removes extra spaces and handles special cases for Hindi and English) | |
| def clean_text(extracted_text): | |
| """ | |
| Cleans extracted text by removing extra spaces and handling language-specific issues (Hindi, English, Hinglish). | |
| """ | |
| # Normalize spaces (remove multiple spaces) | |
| text = re.sub(r'\s+', ' ', extracted_text) | |
| # Handle special cases based on Hindi, English, and Hinglish patterns | |
| text = re.sub(r'([a-zA-Z]+)\s+([a-zA-Z]+)', r'\1 \2', text) # For English | |
| text = re.sub(r'([ा-ह]+)\s+([ा-ह]+)', r'\1\2', text) # For Hindi (conjoining Devanagari characters) | |
| # Remove trailing and leading spaces | |
| return text.strip() | |