Spaces:
Running
Running
import streamlit as st | |
from ocr_cpu import extract_text_got, extract_text_qwen, extract_text_llama, clean_extracted_text | |
import json | |
# Set up page layout and styling | |
st.set_page_config(page_title="MultiModel OCR Fusion", layout="centered", page_icon="π") | |
st.markdown( | |
""" | |
<style> | |
.reportview-container { background: #f4f4f4; } | |
.sidebar .sidebar-content { background: #e0e0e0; } | |
h1 { color: #007BFF; } | |
.upload-btn { background-color: #007BFF; color: white; padding: 10px; border-radius: 5px; text-align: center; } | |
</style> | |
""", unsafe_allow_html=True | |
) | |
# --- Title Section --- | |
st.title("π MultiModel OCR Fusion") | |
st.write("Upload an image to extract and clean text using multiple OCR models (GOT, Qwen, LLaMA).") | |
# --- Image Upload Section --- | |
uploaded_file = st.file_uploader("Upload an image file", type=["jpg", "jpeg", "png"]) | |
# Model selection | |
st.sidebar.title("Model Selection") | |
model_choice = st.sidebar.selectbox("Choose OCR Model", ("GOT", "Qwen", "LLaMA")) | |
if uploaded_file is not None: | |
st.image(uploaded_file, caption='Uploaded Image', use_column_width=True) | |
# Extract text from the image based on selected model | |
with st.spinner(f"Extracting text using the {model_choice} model..."): | |
try: | |
if model_choice == "GOT": | |
extracted_text = extract_text_got(uploaded_file) | |
elif model_choice == "Qwen": | |
extracted_text = extract_text_qwen(uploaded_file) | |
elif model_choice == "LLaMA": | |
extracted_text = extract_text_llama(uploaded_file) | |
# If no text extracted | |
if not extracted_text.strip(): | |
st.warning(f"No text extracted using {model_choice}.") | |
else: | |
# Clean the extracted text | |
cleaned_text = clean_extracted_text(extracted_text) | |
except Exception as e: | |
st.error(f"Error during text extraction: {str(e)}") | |
extracted_text, cleaned_text = "", "" | |
# --- Display Extracted and Cleaned Text --- | |
st.subheader(f"Extracted Text using {model_choice}") | |
st.text_area(f"Raw Text ({model_choice})", extracted_text, height=200) | |
st.subheader("Cleaned Text (AI-processed)") | |
st.text_area("Cleaned Text", cleaned_text, height=200) | |
# Save extracted text for further use | |
if extracted_text: | |
with open("extracted_text.json", "w") as json_file: | |
json.dump({"text": extracted_text}, json_file) | |
# --- Keyword Search --- | |
st.subheader("Search for Keywords") | |
keyword = st.text_input("Enter a keyword to search in the extracted text") | |
if keyword: | |
if keyword.lower() in cleaned_text.lower(): | |
st.success(f"Keyword **'{keyword}'** found in the cleaned text!") | |
else: | |
st.error(f"Keyword **'{keyword}'** not found.") | |