Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import tensorflow as tf
|
4 |
+
import random
|
5 |
+
import gradio as gr
|
6 |
+
from transformers import pipeline
|
7 |
+
|
8 |
+
# Embedded data
|
9 |
+
gdp_data = {
|
10 |
+
'Year': [2020, 2020, 2020, 2020, 2021, 2021, 2021, 2021, 2022, 2022, 2022, 2022],
|
11 |
+
'Quarter': ['Q1', 'Q2', 'Q3', 'Q4', 'Q1', 'Q2', 'Q3', 'Q4', 'Q1', 'Q2', 'Q3', 'Q4'],
|
12 |
+
'GDP': [21433.2, 19477.6, 21042.5, 21428.5, 22038.2, 22696.3, 22994.6, 23400.0, 24025.7, 24483.7, 24988.5, 25387.7]
|
13 |
+
}
|
14 |
+
|
15 |
+
population_data = {
|
16 |
+
'Year': [2020, 2021, 2022],
|
17 |
+
'Population': [331, 332, 333] # In millions
|
18 |
+
}
|
19 |
+
|
20 |
+
# Load data
|
21 |
+
def load_gdp_data():
|
22 |
+
gdp_df = pd.DataFrame(gdp_data)
|
23 |
+
gdp_df['TimePeriod'] = gdp_df['Year'].astype(str) + '-' + gdp_df['Quarter']
|
24 |
+
gdp_df.set_index('TimePeriod', inplace=True)
|
25 |
+
return gdp_df
|
26 |
+
|
27 |
+
def load_population_data():
|
28 |
+
population_df = pd.DataFrame(population_data)
|
29 |
+
total_population = population_df['Population'].sum() * 1e6 # Convert to individual count
|
30 |
+
return total_population
|
31 |
+
|
32 |
+
# Neural Network for Predictive Analytics
|
33 |
+
def train_neural_network(X, y):
|
34 |
+
model = tf.keras.Sequential([
|
35 |
+
tf.keras.layers.Dense(64, activation='relu', input_shape=(X.shape[1],)),
|
36 |
+
tf.keras.layers.Dense(1)
|
37 |
+
])
|
38 |
+
model.compile(optimizer='adam', loss='mean_squared_error')
|
39 |
+
model.fit(X, y, epochs=100)
|
40 |
+
return model
|
41 |
+
|
42 |
+
# Agent class
|
43 |
+
class Agent:
|
44 |
+
def __init__(self, income, wealth, consumption_rate):
|
45 |
+
self.income = income
|
46 |
+
self.wealth = wealth
|
47 |
+
self.consumption_rate = consumption_rate
|
48 |
+
|
49 |
+
def fitness(self):
|
50 |
+
return self.wealth + self.income
|
51 |
+
|
52 |
+
def reproduce(self, other):
|
53 |
+
income = (self.income + other.income) / 2
|
54 |
+
wealth = (self.wealth + other.wealth) / 2
|
55 |
+
consumption_rate = (self.consumption_rate + other.consumption_rate) / 2
|
56 |
+
|
57 |
+
if random.random() < 0.1:
|
58 |
+
income += random.uniform(-10, 10)
|
59 |
+
if random.random() < 0.1:
|
60 |
+
wealth += random.uniform(-1000, 1000)
|
61 |
+
if random.random() < 0.1:
|
62 |
+
consumption_rate += random.uniform(-0.1, 0.1)
|
63 |
+
|
64 |
+
return Agent(income, wealth, consumption_rate)
|
65 |
+
|
66 |
+
def interact(self, other):
|
67 |
+
trade_amount = min(self.wealth, other.wealth) * 0.1
|
68 |
+
self.wealth -= trade_amount
|
69 |
+
other.wealth += trade_amount
|
70 |
+
|
71 |
+
def initialize_population(size):
|
72 |
+
return [Agent(random.uniform(1000, 5000), random.uniform(10000, 50000), random.uniform(0.1, 0.5)) for _ in range(size)]
|
73 |
+
|
74 |
+
# Genetic Algorithm
|
75 |
+
def genetic_algorithm(population, generations, mutation_rate):
|
76 |
+
for generation in range(generations):
|
77 |
+
population.sort(key=lambda agent: agent.fitness(), reverse=True)
|
78 |
+
top_agents = population[:len(population) // 2]
|
79 |
+
|
80 |
+
new_population = []
|
81 |
+
while len(new_population) < len(population):
|
82 |
+
parent1, parent2 = random.sample(top_agents, 2)
|
83 |
+
child = parent1.reproduce(parent2)
|
84 |
+
new_population.append(child)
|
85 |
+
|
86 |
+
population = new_population
|
87 |
+
|
88 |
+
return population
|
89 |
+
|
90 |
+
# Agent-Based Modeling
|
91 |
+
def simulate_abm(population, steps):
|
92 |
+
for step in range(steps):
|
93 |
+
for agent in population:
|
94 |
+
other = random.choice(population)
|
95 |
+
agent.interact(other)
|
96 |
+
|
97 |
+
return population
|
98 |
+
|
99 |
+
# Simulation class with AI integration
|
100 |
+
class Simulation:
|
101 |
+
def __init__(self, gdp_df, total_population, ml_model, generator):
|
102 |
+
self.gdp_df = gdp_df
|
103 |
+
self.total_population = total_population
|
104 |
+
self.ml_model = ml_model
|
105 |
+
self.generator = generator
|
106 |
+
|
107 |
+
def simulate_ubi(self, ubi_amount):
|
108 |
+
total_ubi = self.total_population * ubi_amount
|
109 |
+
new_gdp_df = self.gdp_df.copy()
|
110 |
+
new_gdp_df['GDP'] += total_ubi / 1e9
|
111 |
+
return new_gdp_df
|
112 |
+
|
113 |
+
def predict_future_gdp(self, year):
|
114 |
+
prediction = self.ml_model.predict(np.array([year]).reshape(-1, 1))
|
115 |
+
return prediction[0]
|
116 |
+
|
117 |
+
def generate_insight(self, prompt):
|
118 |
+
return self.generator(prompt, max_length=100, num_return_sequences=1)[0]['generated_text']
|
119 |
+
|
120 |
+
def generative_loop(self, initial_prompt, max_iterations=10, threshold=0.01):
|
121 |
+
prompt = initial_prompt
|
122 |
+
previous_evaluation = None
|
123 |
+
for _ in range(max_iterations):
|
124 |
+
generated_text = self.generate_insight(prompt)
|
125 |
+
evaluation = self.evaluate(generated_text)
|
126 |
+
if previous_evaluation and abs(evaluation - previous_evaluation) < threshold:
|
127 |
+
break
|
128 |
+
previous_evaluation = evaluation
|
129 |
+
prompt = generated_text
|
130 |
+
return generated_text
|
131 |
+
|
132 |
+
def evaluate(self, text):
|
133 |
+
# Simplified evaluation function
|
134 |
+
return len(text)
|
135 |
+
|
136 |
+
def run_simulation(ubi_amount, steps, generations, mutation_rate):
|
137 |
+
# Load data
|
138 |
+
gdp_df = load_gdp_data()
|
139 |
+
total_population = load_population_data()
|
140 |
+
|
141 |
+
# Initialize population
|
142 |
+
population_size = 100
|
143 |
+
population = initialize_population(population_size)
|
144 |
+
|
145 |
+
# Train machine learning model
|
146 |
+
X = np.array(gdp_df.index.str.extract('(\d+)', expand=False).astype(int)).reshape(-1, 1)
|
147 |
+
y = np.array(gdp_df['GDP'])
|
148 |
+
ml_model = train_neural_network(X, y)
|
149 |
+
|
150 |
+
# Initialize GPT-2 generator
|
151 |
+
generator = pipeline('text-generation', model='gpt2')
|
152 |
+
|
153 |
+
# Run genetic algorithm
|
154 |
+
evolved_population = genetic_algorithm(population, generations, mutation_rate)
|
155 |
+
|
156 |
+
# Simulate agent-based interactions
|
157 |
+
final_population = simulate_abm(evolved_population, steps)
|
158 |
+
|
159 |
+
# Create simulation object
|
160 |
+
simulation = Simulation(gdp_df, total_population, ml_model, generator)
|
161 |
+
new_gdp_df = simulation.simulate_ubi(ubi_amount)
|
162 |
+
|
163 |
+
# Generate insights using GPT-2 with generative loop
|
164 |
+
insight_prompt = f"Given an annual UBI of {ubi_amount} dollars, the expected impact on GDP is"
|
165 |
+
final_insight = simulation.generative_loop(insight_prompt)
|
166 |
+
|
167 |
+
# Prepare data for visualization
|
168 |
+
original_gdp = gdp_df['GDP']
|
169 |
+
new_gdp = new_gdp_df['GDP']
|
170 |
+
|
171 |
+
return original_gdp.values.tolist(), new_gdp.values.tolist(), final_insight
|
172 |
+
|
173 |
+
# Gradio interface
|
174 |
+
def create_gradio_interface():
|
175 |
+
interface = gr.Interface(
|
176 |
+
fn=run_simulation,
|
177 |
+
inputs=[
|
178 |
+
gr.Slider(0, 50000, step=1000, label="Annual UBI Amount"),
|
179 |
+
gr.Slider(1, 1000, step=1, label="Simulation Steps"),
|
180 |
+
gr.Slider(1, 100, step=1, label="Generations"),
|
181 |
+
gr.Slider(0.0, 1.0, step=0.01, label="Mutation Rate")
|
182 |
+
],
|
183 |
+
outputs=[
|
184 |
+
gr.Plot(label="Original GDP"),
|
185 |
+
gr.Plot(label="GDP with UBI"),
|
186 |
+
gr.Textbox(label="Generated Insight")
|
187 |
+
],
|
188 |
+
title="UBI Impact Simulation with Generative Loop",
|
189 |
+
description="Simulate the impact of Universal Basic Income (UBI) on GDP using genetic algorithms, agent-based modeling, machine learning, and GPT-2 for generating insights with a generative loop.",
|
190 |
+
live=True
|
191 |
+
)
|
192 |
+
interface.launch()
|
193 |
+
|
194 |
+
if __name__ == "__MAIN__":
|
195 |
+
create_gradio_interface()
|