File size: 8,883 Bytes
8e542dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import torch
from collections import OrderedDict
from os import path as osp
from tqdm import tqdm

from basicsr.archs import build_network
from basicsr.metrics import calculate_metric
from basicsr.utils import get_root_logger, imwrite, tensor2img
from basicsr.utils.registry import MODEL_REGISTRY
import torch.nn.functional as F
from .sr_model import SRModel


@MODEL_REGISTRY.register()
class CodeFormerIdxModel(SRModel):
    def feed_data(self, data):
        self.gt = data['gt'].to(self.device)
        self.input = data['in'].to(self.device)
        self.b = self.gt.shape[0]

        if 'latent_gt' in data:
            self.idx_gt = data['latent_gt'].to(self.device)
            self.idx_gt = self.idx_gt.view(self.b, -1)
        else:
            self.idx_gt = None

    def init_training_settings(self):
        logger = get_root_logger()
        train_opt = self.opt['train']

        self.ema_decay = train_opt.get('ema_decay', 0)
        if self.ema_decay > 0:
            logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}')
            # define network net_g with Exponential Moving Average (EMA)
            # net_g_ema is used only for testing on one GPU and saving
            # There is no need to wrap with DistributedDataParallel
            self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
            # load pretrained model
            load_path = self.opt['path'].get('pretrain_network_g', None)
            if load_path is not None:
                self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
            else:
                self.model_ema(0)  # copy net_g weight
            self.net_g_ema.eval()

        if self.opt['datasets']['train'].get('latent_gt_path', None) is not None:
            self.generate_idx_gt = False
        elif self.opt.get('network_vqgan', None) is not None:
            self.hq_vqgan_fix = build_network(self.opt['network_vqgan']).to(self.device)
            self.hq_vqgan_fix.eval()
            self.generate_idx_gt = True
            for param in self.hq_vqgan_fix.parameters():
                param.requires_grad = False
        else:
            raise NotImplementedError(f'Shoule have network_vqgan config or pre-calculated latent code.')
        
        logger.info(f'Need to generate latent GT code: {self.generate_idx_gt}')

        self.hq_feat_loss = train_opt.get('use_hq_feat_loss', True)
        self.feat_loss_weight = train_opt.get('feat_loss_weight', 1.0)
        self.cross_entropy_loss = train_opt.get('cross_entropy_loss', True)
        self.entropy_loss_weight = train_opt.get('entropy_loss_weight', 0.5)

        self.net_g.train()

        # set up optimizers and schedulers
        self.setup_optimizers()
        self.setup_schedulers()


    def setup_optimizers(self):
        train_opt = self.opt['train']
        # optimizer g
        optim_params_g = []
        for k, v in self.net_g.named_parameters():
            if v.requires_grad:
                optim_params_g.append(v)
            else:
                logger = get_root_logger()
                logger.warning(f'Params {k} will not be optimized.')
        optim_type = train_opt['optim_g'].pop('type')
        self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, **train_opt['optim_g'])
        self.optimizers.append(self.optimizer_g)


    def optimize_parameters(self, current_iter):
        logger = get_root_logger()
        # optimize net_g
        self.optimizer_g.zero_grad()

        if self.generate_idx_gt:
            x = self.hq_vqgan_fix.encoder(self.gt)
            _, _, quant_stats = self.hq_vqgan_fix.quantize(x)
            min_encoding_indices = quant_stats['min_encoding_indices']
            self.idx_gt = min_encoding_indices.view(self.b, -1)
        
        if self.hq_feat_loss:
            # quant_feats
            quant_feat_gt = self.net_g.module.quantize.get_codebook_feat(self.idx_gt, shape=[self.b,16,16,256])

        logits, lq_feat = self.net_g(self.input, w=0, code_only=True)

        l_g_total = 0
        loss_dict = OrderedDict()
        # hq_feat_loss
        if self.hq_feat_loss: # codebook loss 
            l_feat_encoder = torch.mean((quant_feat_gt.detach()-lq_feat)**2) * self.feat_loss_weight
            l_g_total += l_feat_encoder
            loss_dict['l_feat_encoder'] = l_feat_encoder

        # cross_entropy_loss
        if self.cross_entropy_loss:
            # b(hw)n -> bn(hw)
            cross_entropy_loss = F.cross_entropy(logits.permute(0, 2, 1), self.idx_gt) * self.entropy_loss_weight
            l_g_total += cross_entropy_loss
            loss_dict['cross_entropy_loss'] = cross_entropy_loss

        l_g_total.backward()
        self.optimizer_g.step()

        if self.ema_decay > 0:
            self.model_ema(decay=self.ema_decay)

        self.log_dict = self.reduce_loss_dict(loss_dict)


    def test(self):
        with torch.no_grad():
            if hasattr(self, 'net_g_ema'):
                self.net_g_ema.eval()
                self.output, _, _ = self.net_g_ema(self.input, w=0)
            else:
                logger = get_root_logger()
                logger.warning('Do not have self.net_g_ema, use self.net_g.')
                self.net_g.eval()
                self.output, _, _ = self.net_g(self.input, w=0)
                self.net_g.train()


    def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
        if self.opt['rank'] == 0:
            self.nondist_validation(dataloader, current_iter, tb_logger, save_img)


    def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
        dataset_name = dataloader.dataset.opt['name']
        with_metrics = self.opt['val'].get('metrics') is not None
        if with_metrics:
            self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}
        pbar = tqdm(total=len(dataloader), unit='image')

        for idx, val_data in enumerate(dataloader):
            img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]
            self.feed_data(val_data)
            self.test()

            visuals = self.get_current_visuals()
            sr_img = tensor2img([visuals['result']])
            if 'gt' in visuals:
                gt_img = tensor2img([visuals['gt']])
                del self.gt

            # tentative for out of GPU memory
            del self.lq
            del self.output
            torch.cuda.empty_cache()

            if save_img:
                if self.opt['is_train']:
                    save_img_path = osp.join(self.opt['path']['visualization'], img_name,
                                             f'{img_name}_{current_iter}.png')
                else:
                    if self.opt['val']['suffix']:
                        save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
                                                 f'{img_name}_{self.opt["val"]["suffix"]}.png')
                    else:
                        save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
                                                 f'{img_name}_{self.opt["name"]}.png')
                imwrite(sr_img, save_img_path)

            if with_metrics:
                # calculate metrics
                for name, opt_ in self.opt['val']['metrics'].items():
                    metric_data = dict(img1=sr_img, img2=gt_img)
                    self.metric_results[name] += calculate_metric(metric_data, opt_)
            pbar.update(1)
            pbar.set_description(f'Test {img_name}')
        pbar.close()

        if with_metrics:
            for metric in self.metric_results.keys():
                self.metric_results[metric] /= (idx + 1)

            self._log_validation_metric_values(current_iter, dataset_name, tb_logger)


    def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
        log_str = f'Validation {dataset_name}\n'
        for metric, value in self.metric_results.items():
            log_str += f'\t # {metric}: {value:.4f}\n'
        logger = get_root_logger()
        logger.info(log_str)
        if tb_logger:
            for metric, value in self.metric_results.items():
                tb_logger.add_scalar(f'metrics/{metric}', value, current_iter)


    def get_current_visuals(self):
        out_dict = OrderedDict()
        out_dict['gt'] = self.gt.detach().cpu()
        out_dict['result'] = self.output.detach().cpu()
        return out_dict


    def save(self, epoch, current_iter):
        if self.ema_decay > 0:
            self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
        else:
            self.save_network(self.net_g, 'net_g', current_iter)
        self.save_training_state(epoch, current_iter)