Spaces:
Runtime error
Runtime error
File size: 14,679 Bytes
8e542dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import cv2
import math
import random
import numpy as np
import os.path as osp
from scipy.io import loadmat
import torch
import torch.utils.data as data
from torchvision.transforms.functional import (adjust_brightness, adjust_contrast,
adjust_hue, adjust_saturation, normalize)
from basicsr.data import gaussian_kernels as gaussian_kernels
from basicsr.data.transforms import augment
from basicsr.data.data_util import paths_from_folder
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
from basicsr.utils.registry import DATASET_REGISTRY
@DATASET_REGISTRY.register()
class FFHQBlindJointDataset(data.Dataset):
def __init__(self, opt):
super(FFHQBlindJointDataset, self).__init__()
logger = get_root_logger()
self.opt = opt
# file client (io backend)
self.file_client = None
self.io_backend_opt = opt['io_backend']
self.gt_folder = opt['dataroot_gt']
self.gt_size = opt.get('gt_size', 512)
self.in_size = opt.get('in_size', 512)
assert self.gt_size >= self.in_size, 'Wrong setting.'
self.mean = opt.get('mean', [0.5, 0.5, 0.5])
self.std = opt.get('std', [0.5, 0.5, 0.5])
self.component_path = opt.get('component_path', None)
self.latent_gt_path = opt.get('latent_gt_path', None)
if self.component_path is not None:
self.crop_components = True
self.components_dict = torch.load(self.component_path)
self.eye_enlarge_ratio = opt.get('eye_enlarge_ratio', 1.4)
self.nose_enlarge_ratio = opt.get('nose_enlarge_ratio', 1.1)
self.mouth_enlarge_ratio = opt.get('mouth_enlarge_ratio', 1.3)
else:
self.crop_components = False
if self.latent_gt_path is not None:
self.load_latent_gt = True
self.latent_gt_dict = torch.load(self.latent_gt_path)
else:
self.load_latent_gt = False
if self.io_backend_opt['type'] == 'lmdb':
self.io_backend_opt['db_paths'] = self.gt_folder
if not self.gt_folder.endswith('.lmdb'):
raise ValueError("'dataroot_gt' should end with '.lmdb', "f'but received {self.gt_folder}')
with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin:
self.paths = [line.split('.')[0] for line in fin]
else:
self.paths = paths_from_folder(self.gt_folder)
# perform corrupt
self.use_corrupt = opt.get('use_corrupt', True)
self.use_motion_kernel = False
# self.use_motion_kernel = opt.get('use_motion_kernel', True)
if self.use_motion_kernel:
self.motion_kernel_prob = opt.get('motion_kernel_prob', 0.001)
motion_kernel_path = opt.get('motion_kernel_path', 'basicsr/data/motion-blur-kernels-32.pth')
self.motion_kernels = torch.load(motion_kernel_path)
if self.use_corrupt:
# degradation configurations
self.blur_kernel_size = self.opt['blur_kernel_size']
self.kernel_list = self.opt['kernel_list']
self.kernel_prob = self.opt['kernel_prob']
# Small degradation
self.blur_sigma = self.opt['blur_sigma']
self.downsample_range = self.opt['downsample_range']
self.noise_range = self.opt['noise_range']
self.jpeg_range = self.opt['jpeg_range']
# Large degradation
self.blur_sigma_large = self.opt['blur_sigma_large']
self.downsample_range_large = self.opt['downsample_range_large']
self.noise_range_large = self.opt['noise_range_large']
self.jpeg_range_large = self.opt['jpeg_range_large']
# print
logger.info(f'Blur: blur_kernel_size {self.blur_kernel_size}, sigma: [{", ".join(map(str, self.blur_sigma))}]')
logger.info(f'Downsample: downsample_range [{", ".join(map(str, self.downsample_range))}]')
logger.info(f'Noise: [{", ".join(map(str, self.noise_range))}]')
logger.info(f'JPEG compression: [{", ".join(map(str, self.jpeg_range))}]')
# color jitter
self.color_jitter_prob = opt.get('color_jitter_prob', None)
self.color_jitter_pt_prob = opt.get('color_jitter_pt_prob', None)
self.color_jitter_shift = opt.get('color_jitter_shift', 20)
if self.color_jitter_prob is not None:
logger.info(f'Use random color jitter. Prob: {self.color_jitter_prob}, shift: {self.color_jitter_shift}')
# to gray
self.gray_prob = opt.get('gray_prob', 0.0)
if self.gray_prob is not None:
logger.info(f'Use random gray. Prob: {self.gray_prob}')
self.color_jitter_shift /= 255.
@staticmethod
def color_jitter(img, shift):
"""jitter color: randomly jitter the RGB values, in numpy formats"""
jitter_val = np.random.uniform(-shift, shift, 3).astype(np.float32)
img = img + jitter_val
img = np.clip(img, 0, 1)
return img
@staticmethod
def color_jitter_pt(img, brightness, contrast, saturation, hue):
"""jitter color: randomly jitter the brightness, contrast, saturation, and hue, in torch Tensor formats"""
fn_idx = torch.randperm(4)
for fn_id in fn_idx:
if fn_id == 0 and brightness is not None:
brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
img = adjust_brightness(img, brightness_factor)
if fn_id == 1 and contrast is not None:
contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
img = adjust_contrast(img, contrast_factor)
if fn_id == 2 and saturation is not None:
saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
img = adjust_saturation(img, saturation_factor)
if fn_id == 3 and hue is not None:
hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
img = adjust_hue(img, hue_factor)
return img
def get_component_locations(self, name, status):
components_bbox = self.components_dict[name]
if status[0]: # hflip
# exchange right and left eye
tmp = components_bbox['left_eye']
components_bbox['left_eye'] = components_bbox['right_eye']
components_bbox['right_eye'] = tmp
# modify the width coordinate
components_bbox['left_eye'][0] = self.gt_size - components_bbox['left_eye'][0]
components_bbox['right_eye'][0] = self.gt_size - components_bbox['right_eye'][0]
components_bbox['nose'][0] = self.gt_size - components_bbox['nose'][0]
components_bbox['mouth'][0] = self.gt_size - components_bbox['mouth'][0]
locations_gt = {}
locations_in = {}
for part in ['left_eye', 'right_eye', 'nose', 'mouth']:
mean = components_bbox[part][0:2]
half_len = components_bbox[part][2]
if 'eye' in part:
half_len *= self.eye_enlarge_ratio
elif part == 'nose':
half_len *= self.nose_enlarge_ratio
elif part == 'mouth':
half_len *= self.mouth_enlarge_ratio
loc = np.hstack((mean - half_len + 1, mean + half_len))
loc = torch.from_numpy(loc).float()
locations_gt[part] = loc
loc_in = loc/(self.gt_size//self.in_size)
locations_in[part] = loc_in
return locations_gt, locations_in
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
# load gt image
gt_path = self.paths[index]
name = osp.basename(gt_path)[:-4]
img_bytes = self.file_client.get(gt_path)
img_gt = imfrombytes(img_bytes, float32=True)
# random horizontal flip
img_gt, status = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False, return_status=True)
if self.load_latent_gt:
if status[0]:
latent_gt = self.latent_gt_dict['hflip'][name]
else:
latent_gt = self.latent_gt_dict['orig'][name]
if self.crop_components:
locations_gt, locations_in = self.get_component_locations(name, status)
# generate in image
img_in = img_gt
if self.use_corrupt:
# motion blur
if self.use_motion_kernel and random.random() < self.motion_kernel_prob:
m_i = random.randint(0,31)
k = self.motion_kernels[f'{m_i:02d}']
img_in = cv2.filter2D(img_in,-1,k)
# gaussian blur
kernel = gaussian_kernels.random_mixed_kernels(
self.kernel_list,
self.kernel_prob,
self.blur_kernel_size,
self.blur_sigma,
self.blur_sigma,
[-math.pi, math.pi],
noise_range=None)
img_in = cv2.filter2D(img_in, -1, kernel)
# downsample
scale = np.random.uniform(self.downsample_range[0], self.downsample_range[1])
img_in = cv2.resize(img_in, (int(self.gt_size // scale), int(self.gt_size // scale)), interpolation=cv2.INTER_LINEAR)
# noise
if self.noise_range is not None:
noise_sigma = np.random.uniform(self.noise_range[0] / 255., self.noise_range[1] / 255.)
noise = np.float32(np.random.randn(*(img_in.shape))) * noise_sigma
img_in = img_in + noise
img_in = np.clip(img_in, 0, 1)
# jpeg
if self.jpeg_range is not None:
jpeg_p = np.random.uniform(self.jpeg_range[0], self.jpeg_range[1])
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_p]
_, encimg = cv2.imencode('.jpg', img_in * 255., encode_param)
img_in = np.float32(cv2.imdecode(encimg, 1)) / 255.
# resize to in_size
img_in = cv2.resize(img_in, (self.in_size, self.in_size), interpolation=cv2.INTER_LINEAR)
# generate in_large with large degradation
img_in_large = img_gt
if self.use_corrupt:
# motion blur
if self.use_motion_kernel and random.random() < self.motion_kernel_prob:
m_i = random.randint(0,31)
k = self.motion_kernels[f'{m_i:02d}']
img_in_large = cv2.filter2D(img_in_large,-1,k)
# gaussian blur
kernel = gaussian_kernels.random_mixed_kernels(
self.kernel_list,
self.kernel_prob,
self.blur_kernel_size,
self.blur_sigma_large,
self.blur_sigma_large,
[-math.pi, math.pi],
noise_range=None)
img_in_large = cv2.filter2D(img_in_large, -1, kernel)
# downsample
scale = np.random.uniform(self.downsample_range_large[0], self.downsample_range_large[1])
img_in_large = cv2.resize(img_in_large, (int(self.gt_size // scale), int(self.gt_size // scale)), interpolation=cv2.INTER_LINEAR)
# noise
if self.noise_range_large is not None:
noise_sigma = np.random.uniform(self.noise_range_large[0] / 255., self.noise_range_large[1] / 255.)
noise = np.float32(np.random.randn(*(img_in_large.shape))) * noise_sigma
img_in_large = img_in_large + noise
img_in_large = np.clip(img_in_large, 0, 1)
# jpeg
if self.jpeg_range_large is not None:
jpeg_p = np.random.uniform(self.jpeg_range_large[0], self.jpeg_range_large[1])
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_p]
_, encimg = cv2.imencode('.jpg', img_in_large * 255., encode_param)
img_in_large = np.float32(cv2.imdecode(encimg, 1)) / 255.
# resize to in_size
img_in_large = cv2.resize(img_in_large, (self.in_size, self.in_size), interpolation=cv2.INTER_LINEAR)
# random color jitter (only for lq)
if self.color_jitter_prob is not None and (np.random.uniform() < self.color_jitter_prob):
img_in = self.color_jitter(img_in, self.color_jitter_shift)
img_in_large = self.color_jitter(img_in_large, self.color_jitter_shift)
# random to gray (only for lq)
if self.gray_prob and np.random.uniform() < self.gray_prob:
img_in = cv2.cvtColor(img_in, cv2.COLOR_BGR2GRAY)
img_in = np.tile(img_in[:, :, None], [1, 1, 3])
img_in_large = cv2.cvtColor(img_in_large, cv2.COLOR_BGR2GRAY)
img_in_large = np.tile(img_in_large[:, :, None], [1, 1, 3])
# BGR to RGB, HWC to CHW, numpy to tensor
img_in, img_in_large, img_gt = img2tensor([img_in, img_in_large, img_gt], bgr2rgb=True, float32=True)
# random color jitter (pytorch version) (only for lq)
if self.color_jitter_pt_prob is not None and (np.random.uniform() < self.color_jitter_pt_prob):
brightness = self.opt.get('brightness', (0.5, 1.5))
contrast = self.opt.get('contrast', (0.5, 1.5))
saturation = self.opt.get('saturation', (0, 1.5))
hue = self.opt.get('hue', (-0.1, 0.1))
img_in = self.color_jitter_pt(img_in, brightness, contrast, saturation, hue)
img_in_large = self.color_jitter_pt(img_in_large, brightness, contrast, saturation, hue)
# round and clip
img_in = np.clip((img_in * 255.0).round(), 0, 255) / 255.
img_in_large = np.clip((img_in_large * 255.0).round(), 0, 255) / 255.
# Set vgg range_norm=True if use the normalization here
# normalize
normalize(img_in, self.mean, self.std, inplace=True)
normalize(img_in_large, self.mean, self.std, inplace=True)
normalize(img_gt, self.mean, self.std, inplace=True)
return_dict = {'in': img_in, 'in_large_de': img_in_large, 'gt': img_gt, 'gt_path': gt_path}
if self.crop_components:
return_dict['locations_in'] = locations_in
return_dict['locations_gt'] = locations_gt
if self.load_latent_gt:
return_dict['latent_gt'] = latent_gt
return return_dict
def __len__(self):
return len(self.paths)
|