File size: 6,357 Bytes
8e542dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89ebe1c
8e542dc
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import cv2
import torch
import gradio as gr
from torchvision.transforms.functional import normalize
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils import imwrite, img2tensor, tensor2img
from basicsr.utils.misc import gpu_is_available, get_device
from basicsr.utils.realesrgan_utils import RealESRGANer
from basicsr.utils.registry import ARCH_REGISTRY

from facelib.utils.face_restoration_helper import FaceRestoreHelper
from facelib.utils.misc import is_gray


def imread(img_path):
    img = cv2.imread(img_path)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    return img


def set_realesrgan():
    half = True if gpu_is_available() else False
    model = RRDBNet(
        num_in_ch=3,
        num_out_ch=3,
        num_feat=64,
        num_block=23,
        num_grow_ch=32,
        scale=2,
    )
    upsampler = RealESRGANer(
        scale=2,
        model_path="CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth",
        model=model,
        tile=400,
        tile_pad=40,
        pre_pad=0,
        half=half,
    )
    return upsampler


upsampler = set_realesrgan()

device = get_device()
codeformer_net = ARCH_REGISTRY.get("CodeFormer")(
    dim_embd=512,
    codebook_size=1024,
    n_head=8,
    n_layers=9,
    connect_list=["32", "64", "128", "256"],
).to(device)
ckpt_path = "CodeFormer/weights/CodeFormer/codeformer.pth"
checkpoint = torch.load(ckpt_path)["params_ema"]
codeformer_net.load_state_dict(checkpoint)
codeformer_net.eval()

os.makedirs('output', exist_ok=True)


def inference(image, background_enhance, face_upsample, upscale, codeformer_fidelity):
    """Run a single prediction on the model"""
    try:  # global try
        # take the default setting for the demo
        has_aligned = False
        only_center_face = False
        draw_box = False
        detection_model = "retinaface_resnet50"

        img = cv2.imread(str(image), cv2.IMREAD_COLOR)

        upscale = int(upscale)
        if upscale > 4:
            upscale = 4
        if upscale > 2 and max(img.shape[:2]) > 1000:
            upscale = 2
        if max(img.shape[:2]) > 1500:
            upscale = 1
            background_enhance = False
            face_upsample = False

        face_helper = FaceRestoreHelper(
            upscale,
            face_size=512,
            crop_ratio=(1, 1),
            det_model=detection_model,
            save_ext="png",
            use_parse=True,
            device=device,
        )
        bg_upsampler = upsampler if background_enhance else None
        face_upsampler = upsampler if face_upsample else None

        if has_aligned:
            # the input faces are already cropped and aligned
            img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
            face_helper.is_gray = is_gray(img, threshold=5)
            if face_helper.is_gray:
                print('\tgrayscale input: True')
            face_helper.cropped_faces = [img]
        else:
            face_helper.read_image(img)
            # get face landmarks for each face
            num_det_faces = face_helper.get_face_landmarks_5(
                only_center_face=only_center_face, resize=640, eye_dist_threshold=5
            )
            print(f'\tdetect {num_det_faces} faces')
            # align and warp each face
            face_helper.align_warp_face()

        # face restoration for each cropped face
        for idx, cropped_face in enumerate(face_helper.cropped_faces):
            # prepare data
            cropped_face_t = img2tensor(
                cropped_face / 255.0, bgr2rgb=True, float32=True
            )
            normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
            cropped_face_t = cropped_face_t.unsqueeze(0).to(device)

            try:
                with torch.no_grad():
                    output = codeformer_net(
                        cropped_face_t, w=codeformer_fidelity, adain=True
                    )[0]
                    restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
                del output
                torch.cuda.empty_cache()
            except RuntimeError as error:
                print(f"Failed inference for CodeFormer: {error}")
                restored_face = tensor2img(
                    cropped_face_t, rgb2bgr=True, min_max=(-1, 1)
                )

            restored_face = restored_face.astype("uint8")
            face_helper.add_restored_face(restored_face)

        if not has_aligned:
            # upsample the background
            if bg_upsampler is not None:
                # Now only support RealESRGAN for upsampling background
                bg_img = bg_upsampler.enhance(img, outscale=upscale)[0]
            else:
                bg_img = None
            face_helper.get_inverse_affine(None)
            # paste each restored face to the input image
            if face_upsample and face_upsampler is not None:
                restored_img = face_helper.paste_faces_to_input_image(
                    upsample_img=bg_img,
                    draw_box=draw_box,
                    face_upsampler=face_upsampler,
                )
            else:
                restored_img = face_helper.paste_faces_to_input_image(
                    upsample_img=bg_img, draw_box=draw_box
                )

        # save restored img
        save_path = f'output/out.png'
        imwrite(restored_img, str(save_path))

        restored_img = cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB)
        return restored_img, save_path
    except Exception as error:
        print('Global exception', error)
        return None, None


title = "CodeFormer:  Face Restoration "

demo = gr.Interface(
    inference, [
        gr.inputs.Image(type="filepath", label="Input"),
        gr.inputs.Checkbox(default=True, label="Background_Enhance"),
        gr.inputs.Checkbox(default=True, label="Face_Upsample"),
        gr.inputs.Number(default=2, label="Rescaling_Factor (up to 4)"),
        gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity (0 for better quality, 1 for better identity)')
    ], [
        gr.outputs.Image(type="numpy", label="Output"),
        gr.outputs.File(label="Download the output")

    ],
    title=title,
    examples=[["input.png", True, True, 2, 0.5]]

)

demo.queue(concurrency_count=2)
demo.launch()