"""BERT finetuning runner.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import json import glob import logging import argparse import math from tqdm import tqdm import numpy as np import torch import random import pickle from s2s_ft.modeling_decoding import BertForSeq2SeqDecoder, BertConfig from transformers.tokenization_bert import whitespace_tokenize import s2s_ft.s2s_loader as seq2seq_loader from s2s_ft.utils import load_and_cache_examples from transformers import \ BertTokenizer, RobertaTokenizer, XLMRobertaTokenizer, ElectraTokenizer from s2s_ft.tokenization_unilm import UnilmTokenizer from s2s_ft.tokenization_minilm import MinilmTokenizer TOKENIZER_CLASSES = { 'bert': BertTokenizer, 'minilm': MinilmTokenizer, 'roberta': RobertaTokenizer, 'unilm': UnilmTokenizer, 'xlm-roberta': XLMRobertaTokenizer, 'electra': ElectraTokenizer, } class WhitespaceTokenizer(object): def tokenize(self, text): return whitespace_tokenize(text) logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) def detokenize(tk_list): r_list = [] for tk in tk_list: if tk.startswith('##') and len(r_list) > 0: r_list[-1] = r_list[-1] + tk[2:] else: r_list.append(tk) return r_list def ascii_print(text): text = text.encode("ascii", "ignore") print(text) def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument("--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(TOKENIZER_CLASSES.keys())) parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model checkpoint.") parser.add_argument("--config_path", default=None, type=str, help="Path to config.json for the model.") # tokenizer_name parser.add_argument("--tokenizer_name", default=None, type=str, required=True, help="tokenizer name") parser.add_argument("--max_seq_length", default=512, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") # decoding parameters parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--no_cuda', action='store_true', help="Whether to use CUDA for decoding") parser.add_argument("--input_file", type=str, help="Input file") parser.add_argument('--subset', type=int, default=0, help="Decode a subset of the input dataset.") parser.add_argument("--output_file", type=str, help="output file") parser.add_argument("--split", type=str, default="", help="Data split (train/val/test).") parser.add_argument('--tokenized_input', action='store_true', help="Whether the input is tokenized.") parser.add_argument('--seed', type=int, default=123, help="random seed for initialization") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument('--batch_size', type=int, default=4, help="Batch size for decoding.") parser.add_argument('--beam_size', type=int, default=1, help="Beam size for searching") parser.add_argument('--length_penalty', type=float, default=0, help="Length penalty for beam search") parser.add_argument('--forbid_duplicate_ngrams', action='store_true') parser.add_argument('--forbid_ignore_word', type=str, default=None, help="Forbid the word during forbid_duplicate_ngrams") parser.add_argument("--min_len", default=1, type=int) parser.add_argument('--need_score_traces', action='store_true') parser.add_argument('--ngram_size', type=int, default=3) parser.add_argument('--mode', default="s2s", choices=["s2s", "l2r", "both"]) parser.add_argument('--max_tgt_length', type=int, default=128, help="maximum length of target sequence") parser.add_argument('--s2s_special_token', action='store_true', help="New special tokens ([S2S_SEP]/[S2S_CLS]) of S2S.") parser.add_argument('--s2s_add_segment', action='store_true', help="Additional segmental for the encoder of S2S.") parser.add_argument('--s2s_share_segment', action='store_true', help="Sharing segment embeddings for the encoder of S2S (used with --s2s_add_segment).") parser.add_argument('--pos_shift', action='store_true', help="Using position shift for fine-tuning.") parser.add_argument("--cache_dir", default=None, type=str, help="Where do you want to store the pre-trained models downloaded from s3") args = parser.parse_args() if args.need_score_traces and args.beam_size <= 1: raise ValueError( "Score trace is only available for beam search with beam size > 1.") if args.max_tgt_length >= args.max_seq_length - 2: raise ValueError("Maximum tgt length exceeds max seq length - 2.") device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") n_gpu = torch.cuda.device_count() if args.seed > 0: random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) else: random_seed = random.randint(0, 10000) logger.info("Set random seed as: {}".format(random_seed)) random.seed(random_seed) np.random.seed(random_seed) torch.manual_seed(random_seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) tokenizer = TOKENIZER_CLASSES[args.model_type].from_pretrained( args.tokenizer_name, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None) if args.model_type == "roberta": vocab = tokenizer.encoder elif args.model_type == "xlm-roberta": vocab = {} for tk_id in range(len(tokenizer)): tk = tokenizer._convert_id_to_token(tk_id) vocab[tk] = tk_id else: vocab = tokenizer.vocab if hasattr(tokenizer, 'model_max_length'): tokenizer.model_max_length = args.max_seq_length elif hasattr(tokenizer, 'max_len'): tokenizer.max_len = args.max_seq_length mask_word_id, eos_word_ids, sos_word_id = tokenizer.convert_tokens_to_ids( [tokenizer.mask_token, tokenizer.sep_token, tokenizer.sep_token]) forbid_ignore_set = None if args.forbid_ignore_word: w_list = [] for w in args.forbid_ignore_word.split('|'): if w.startswith('[') and w.endswith(']'): w_list.append(w.upper()) else: w_list.append(w) forbid_ignore_set = set(tokenizer.convert_tokens_to_ids(w_list)) print(args.model_path) found_checkpoint_flag = False for model_recover_path in glob.glob(args.model_path): if not os.path.isdir(model_recover_path): continue logger.info("***** Recover model: %s *****", model_recover_path) config_file = args.config_path if args.config_path else os.path.join(model_recover_path, "config.json") logger.info("Read decoding config from: %s" % config_file) config = BertConfig.from_json_file(config_file) bi_uni_pipeline = [] bi_uni_pipeline.append(seq2seq_loader.Preprocess4Seq2seqDecoder( list(vocab.keys()), tokenizer.convert_tokens_to_ids, args.max_seq_length, max_tgt_length=args.max_tgt_length, pos_shift=args.pos_shift, source_type_id=config.source_type_id, target_type_id=config.target_type_id, cls_token=tokenizer.cls_token, sep_token=tokenizer.sep_token, pad_token=tokenizer.pad_token)) found_checkpoint_flag = True model = BertForSeq2SeqDecoder.from_pretrained( model_recover_path, config=config, mask_word_id=mask_word_id, search_beam_size=args.beam_size, length_penalty=args.length_penalty, eos_id=eos_word_ids, sos_id=sos_word_id, forbid_duplicate_ngrams=args.forbid_duplicate_ngrams, forbid_ignore_set=forbid_ignore_set, ngram_size=args.ngram_size, min_len=args.min_len, mode=args.mode, max_position_embeddings=args.max_seq_length, pos_shift=args.pos_shift, ) if args.fp16: model.half() model.to(device) if n_gpu > 1: model = torch.nn.DataParallel(model) torch.cuda.empty_cache() model.eval() next_i = 0 max_src_length = args.max_seq_length - 2 - args.max_tgt_length if args.pos_shift: max_src_length += 1 to_pred = load_and_cache_examples( args.input_file, tokenizer, local_rank=-1, cached_features_file=None, shuffle=False, eval_mode=True) input_lines = [] for line in to_pred: input_lines.append(tokenizer.convert_ids_to_tokens(line.source_ids)[:max_src_length]) if args.subset > 0: logger.info("Decoding subset: %d", args.subset) input_lines = input_lines[:args.subset] input_lines = sorted(list(enumerate(input_lines)), key=lambda x: -len(x[1])) output_lines = [""] * len(input_lines) score_trace_list = [None] * len(input_lines) total_batch = math.ceil(len(input_lines) / args.batch_size) with tqdm(total=total_batch) as pbar: batch_count = 0 first_batch = True while next_i < len(input_lines): _chunk = input_lines[next_i:next_i + args.batch_size] buf_id = [x[0] for x in _chunk] buf = [x[1] for x in _chunk] next_i += args.batch_size batch_count += 1 max_a_len = max([len(x) for x in buf]) instances = [] for instance in [(x, max_a_len) for x in buf]: for proc in bi_uni_pipeline: instances.append(proc(instance)) with torch.no_grad(): batch = seq2seq_loader.batch_list_to_batch_tensors( instances) batch = [ t.to(device) if t is not None else None for t in batch] input_ids, token_type_ids, position_ids, input_mask, mask_qkv, task_idx = batch traces = model(input_ids, token_type_ids, position_ids, input_mask, task_idx=task_idx, mask_qkv=mask_qkv) if args.beam_size > 1: traces = {k: v.tolist() for k, v in traces.items()} output_ids = traces['pred_seq'] else: output_ids = traces.tolist() for i in range(len(buf)): w_ids = output_ids[i] output_buf = tokenizer.convert_ids_to_tokens(w_ids) output_tokens = [] for t in output_buf: if t in (tokenizer.sep_token, tokenizer.pad_token): break output_tokens.append(t) if args.model_type == "roberta" or args.model_type == "xlm-roberta": output_sequence = tokenizer.convert_tokens_to_string(output_tokens) else: output_sequence = ' '.join(detokenize(output_tokens)) if '\n' in output_sequence: output_sequence = " [X_SEP] ".join(output_sequence.split('\n')) output_lines[buf_id[i]] = output_sequence if first_batch or batch_count % 50 == 0: logger.info("{} = {}".format(buf_id[i], output_sequence)) if args.need_score_traces: score_trace_list[buf_id[i]] = { 'scores': traces['scores'][i], 'wids': traces['wids'][i], 'ptrs': traces['ptrs'][i]} pbar.update(1) first_batch = False if args.output_file: fn_out = args.output_file else: fn_out = model_recover_path+'.'+args.split with open(fn_out, "w", encoding="utf-8") as fout: for l in output_lines: fout.write(l) fout.write("\n") if args.need_score_traces: with open(fn_out + ".trace.pickle", "wb") as fout_trace: pickle.dump( {"version": 0.0, "num_samples": len(input_lines)}, fout_trace) for x in score_trace_list: pickle.dump(x, fout_trace) if not found_checkpoint_flag: logger.info("Not found the model checkpoint file!") if __name__ == "__main__": main()