#!/usr/bin/env python # -------------------------------------------------------------------------------- # MPViT: Multi-Path Vision Transformer for Dense Prediction # Copyright (c) 2022 Electronics and Telecommunications Research Institute (ETRI). # All Rights Reserved. # Written by Youngwan Lee # -------------------------------------------------------------------------------- """ Detection Training Script for MPViT. """ import os import itertools import torch from typing import Any, Dict, List, Set from detectron2.data import build_detection_train_loader from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import get_cfg from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch from detectron2.evaluation import COCOEvaluator from detectron2.solver.build import maybe_add_gradient_clipping from ditod import add_vit_config from ditod import DetrDatasetMapper from detectron2.data.datasets import register_coco_instances import logging from detectron2.utils.logger import setup_logger from detectron2.utils import comm from detectron2.engine.defaults import create_ddp_model import weakref from detectron2.engine.train_loop import AMPTrainer, SimpleTrainer from ditod import MyDetectionCheckpointer, ICDAREvaluator from ditod import MyTrainer def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() # add_coat_config(cfg) add_vit_config(cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() default_setup(cfg, args) return cfg def main(args): """ register publaynet first """ register_coco_instances( "publaynet_train", {}, "./publaynet_data/train.json", "./publaynet_data/train" ) register_coco_instances( "publaynet_val", {}, "./publaynet_data/val.json", "./publaynet_data/val" ) register_coco_instances( "icdar2019_train", {}, "data/train.json", "data/train" ) register_coco_instances( "icdar2019_test", {}, "data/test.json", "data/test" ) cfg = setup(args) if args.eval_only: model = MyTrainer.build_model(cfg) DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( cfg.MODEL.WEIGHTS, resume=args.resume ) res = MyTrainer.test(cfg, model) return res trainer = MyTrainer(cfg) trainer.resume_or_load(resume=args.resume) return trainer.train() if __name__ == "__main__": parser = default_argument_parser() parser.add_argument("--debug", action="store_true", help="enable debug mode") args = parser.parse_args() print("Command Line Args:", args) if args.debug: import debugpy print("Enabling attach starts.") debugpy.listen(address=('0.0.0.0', 9310)) debugpy.wait_for_client() print("Enabling attach ends.") launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )