# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # --------------------------------------------------------' import math import random import warnings import torchvision.transforms.functional as F from timm.data.transforms import interp_mode_to_str, _RANDOM_INTERPOLATION, str_to_interp_mode class RandomResizedCropAndInterpolationWithTwoPic: """Crop the given PIL Image to random size and aspect ratio with random interpolation. A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop is finally resized to given size. This is popularly used to train the Inception networks. Args: size: expected output size of each edge scale: range of size of the origin size cropped ratio: range of aspect ratio of the origin aspect ratio cropped interpolation: Default: PIL.Image.BILINEAR """ def __init__(self, size, second_size=None, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation='bilinear', second_interpolation='lanczos'): if isinstance(size, tuple): self.size = size else: self.size = (size, size) if second_size is not None: if isinstance(second_size, tuple): self.second_size = second_size else: self.second_size = (second_size, second_size) else: self.second_size = None if (scale[0] > scale[1]) or (ratio[0] > ratio[1]): warnings.warn("range should be of kind (min, max)") if interpolation == 'random': self.interpolation = _RANDOM_INTERPOLATION else: self.interpolation = str_to_interp_mode(interpolation) self.second_interpolation = str_to_interp_mode(second_interpolation) self.scale = scale self.ratio = ratio @staticmethod def get_params(img, scale, ratio): """Get parameters for ``crop`` for a random sized crop. Args: img (PIL Image): Image to be cropped. scale (tuple): range of size of the origin size cropped ratio (tuple): range of aspect ratio of the origin aspect ratio cropped Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for a random sized crop. """ area = img.size[0] * img.size[1] for attempt in range(10): target_area = random.uniform(*scale) * area log_ratio = (math.log(ratio[0]), math.log(ratio[1])) aspect_ratio = math.exp(random.uniform(*log_ratio)) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if w <= img.size[0] and h <= img.size[1]: i = random.randint(0, img.size[1] - h) j = random.randint(0, img.size[0] - w) return i, j, h, w # Fallback to central crop in_ratio = img.size[0] / img.size[1] if in_ratio < min(ratio): w = img.size[0] h = int(round(w / min(ratio))) elif in_ratio > max(ratio): h = img.size[1] w = int(round(h * max(ratio))) else: # whole image w = img.size[0] h = img.size[1] i = (img.size[1] - h) // 2 j = (img.size[0] - w) // 2 return i, j, h, w def __call__(self, img): """ Args: img (PIL Image): Image to be cropped and resized. Returns: PIL Image: Randomly cropped and resized image. """ i, j, h, w = self.get_params(img, self.scale, self.ratio) if isinstance(self.interpolation, (tuple, list)): interpolation = random.choice(self.interpolation) else: interpolation = self.interpolation if self.second_size is None: return F.resized_crop(img, i, j, h, w, self.size, interpolation) else: return F.resized_crop(img, i, j, h, w, self.size, interpolation), \ F.resized_crop(img, i, j, h, w, self.second_size, self.second_interpolation) def __repr__(self): if isinstance(self.interpolation, (tuple, list)): interpolate_str = ' '.join([interp_mode_to_str(x) for x in self.interpolation]) else: interpolate_str = interp_mode_to_str(self.interpolation) format_string = self.__class__.__name__ + '(size={0}'.format(self.size) format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale)) format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio)) format_string += ', interpolation={0}'.format(interpolate_str) if self.second_size is not None: format_string += ', second_size={0}'.format(self.second_size) format_string += ', second_interpolation={0}'.format(interp_mode_to_str(self.second_interpolation)) format_string += ')' return format_string