# Generalized Aggressive Decoding Codes (originally from https://github.com/hemingkx/GAD) for Generalized Aggressive Decoding that is originally proposed in the paper [Lossless Speedup of Autoregressive Translation with Generalized Aggressive Decoding](https://arxiv.org/pdf/2203.16487.pdf). ### Download model | Description | Model | | ----------- | ------------------------------------------------------------ | | wmt14.en-de | [at-verifier-base](https://drive.google.com/file/d/1L9z0Y5rked_tYn7Fllh-0VsRdgBHN1Mp/view?usp=sharing), [nat-drafter-base (k=25)](https://drive.google.com/file/d/1fPYt1QGgIrNfk78XvGnrx_TeDRYePr2e/view?usp=sharing) | | wmt14.de-en | [at-verifier-base](https://drive.google.com/file/d/1h5EdTEt2PMqvAqCq2G5bRhCeWk8LzwoG/view?usp=sharing), [nat-drafter-base (k=25)](https://drive.google.com/file/d/1IEX2K65rgv5SUHWxiowXYaS--Zqr3GvT/view?usp=sharing) | | wmt16.en-ro | [at-verifier-base](https://drive.google.com/file/d/1WocmZ9iw_OokYZY_BtzNAjGsgRXB-Aft/view?usp=sharing), [nat-drafter-base (k=25)](https://drive.google.com/file/d/1V_WbPRbgmIy-4oZDkws9mdFSw8n8KOGm/view?usp=sharing) | | wmt16.ro-en | [at-verifier-base](https://drive.google.com/file/d/1LWHC56HvTtvs58EMwoYMT6jKByuMW1dB/view?usp=sharing), [nat-drafter-base (k=25)](https://drive.google.com/file/d/1P21nU3u4WdJueEl4nqAY-cwUKAvzPu8A/view?usp=sharing) | ### Requirements - Python >= 3.7 - Pytorch >= 1.5.0 ### Installation ``` conda create -n gad python=3.7 cd GAD pip install --editable . ``` ### Preprocess We release the bpe codes and our dict in `./data`. ``` text=PATH_YOUR_DATA src=source_language tgt=target_language model_path=PATH_TO_MODEL_DICT_DIR fairseq-preprocess --source-lang ${src} --target-lang ${tgt} \ --trainpref $text/train --validpref $text/valid --testpref $text/test \ --destdir PATH_TO_BIN_DIR --workers 60 \ --srcdict ${model_path}/dict.${src}.txt \ --tgtdict ${model_path}/dict.${tgt}.txt ``` ### Train For training the NAT drafter of GAD (check `train.sh`) ``` python train.py ${bin_path} --arch block --noise block_mask --share-all-embeddings \ --criterion glat_loss --label-smoothing 0.1 --lr ${lr} --warmup-init-lr 1e-7 \ --stop-min-lr 1e-9 --lr-scheduler inverse_sqrt --warmup-updates ${warmup} \ --optimizer adam --adam-betas '(0.9, 0.999)' --adam-eps 1e-6 \ --task translation_lev_modified --max-tokens ${max_tokens} --weight-decay 0.01 \ --dropout ${dropout} --encoder-layers 6 --encoder-embed-dim 512 --decoder-layers 6 \ --decoder-embed-dim 512 --fp16 --max-source-positions 1000 \ --max-target-positions 1000 --max-update ${update} --seed ${seed} --clip-norm 5 \ --save-dir ./checkpoints --src-embedding-copy --log-interval 1000 \ --user-dir block_plugins --block-size ${size} --total-up ${update} \ --update-freq ${update_freq} --decoder-learned-pos --encoder-learned-pos \ --apply-bert-init --activation-fn gelu ``` ### Inference For GAD++ (check `inference.sh`, set `beta=1` for vanilla GAD): ``` python inference.py ${data_dir} --path ${checkpoint_path} --user-dir block_plugins \ --task translation_lev_modified --remove-bpe --max-sentences 20 \ --source-lang ${src} --target-lang ${tgt} --iter-decode-max-iter 0 \ --iter-decode-eos-penalty 0 --iter-decode-with-beam 1 --gen-subset test \ --AR-path ${AR_checkpoint_path} --input-path ${input_path} \ --output-path ${output_path} --block-size ${block_size} --beta ${beta} --tau ${tau} \ --batch ${batch} --beam ${beam} --strategy ${strategy} ``` > We test the inference latency of GAD with batch 1 implementation, check `inference_paper.py` for details. > Calculating compound split bleu: ``` ./ref.sh ``` ### Note This code is based on GLAT [(https://github.com/FLC777/GLAT)](https://github.com/FLC777/GLAT).