# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa).""" from __future__ import absolute_import, division, print_function import argparse import glob import logging import os import random import json import numpy as np import torch from seqeval.metrics import f1_score, precision_score, recall_score from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset) from torch.utils.data.distributed import DistributedSampler from torch.nn import CrossEntropyLoss try: from torch.utils.tensorboard import SummaryWriter except: from tensorboardX import SummaryWriter from tqdm import tqdm, trange from transformers import ( WEIGHTS_NAME, AdamW, BertConfig, BertForTokenClassification, BertTokenizer, DistilBertConfig, DistilBertForTokenClassification, DistilBertTokenizer, RobertaConfig, RobertaForTokenClassification, RobertaTokenizer, XLMRobertaConfig, XLMRobertaForTokenClassification, XLMRobertaTokenizer ) from transformers import AdamW, get_linear_schedule_with_warmup from utils_ner import convert_examples_to_features, get_labels, read_examples_from_file logger = logging.getLogger(__name__) ALL_MODELS = sum( ( tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, RobertaConfig, DistilBertConfig, XLMRobertaConfig) ), (), ) MODEL_CLASSES = { "bert": (BertConfig, BertForTokenClassification, BertTokenizer), "roberta": (RobertaConfig, RobertaForTokenClassification, RobertaTokenizer), "distilbert": (DistilBertConfig, DistilBertForTokenClassification, DistilBertTokenizer), "xlmroberta": (XLMRobertaConfig, XLMRobertaForTokenClassification, XLMRobertaTokenizer), } TOKENIZER_ARGS = ["do_lower_case", "strip_accents", "keep_accents", "use_fast"] def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def train(args, train_dataset, model, tokenizer, labels, pad_token_label_id): """ Train the model """ if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) if args.warmup_ratio > 0: args.warmup_steps = int(t_total*args.warmup_ratio) # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) # Check if saved optimizer or scheduler states exist if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile( os.path.join(args.model_name_or_path, "scheduler.pt") ): # Load in optimizer and scheduler states optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1)) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) metric_for_best = args.metric_for_choose_best_checkpoint best_performance = None best_epoch = None global_step = 0 tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) set_seed(args) # Added here for reproductibility (even between python 2 and 3) for _ in train_iterator: if args.disable_tqdm: epoch_iterator = train_dataloader else: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): model.train() batch = tuple(t.to(args.device) for t in batch) inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if args.model_type != 'distilbert': inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet', 'unilm', 'adapterbert'] else None # XLM, DistilBERT and RoBERTa don't use segment_ids outputs = model(**inputs) loss = outputs[0] # model outputs are always tuple in transformers (see doc) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.max_grad_norm > 0: if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 epoch_iterator.set_description('Iter (loss=%5.3f) lr=%9.7f' % (loss.item(), scheduler.get_lr()[0])) if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: logs = {} loss_scalar = (tr_loss - logging_loss) / args.logging_steps learning_rate_scalar = scheduler.get_lr()[0] logs['learning_rate'] = learning_rate_scalar logs['loss'] = loss_scalar logging_loss = tr_loss for key, value in logs.items(): tb_writer.add_scalar(key, value, global_step) logger.info(json.dumps({**logs, **{'step': global_step}})) if args.max_steps > 0 and global_step > args.max_steps: if not args.disable_tqdm: epoch_iterator.close() break if args.local_rank in [-1, 0]: logs = {} if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model, tokenizer, prefix='epoch-{}'.format(_ + 1)) for key, value in results.items(): eval_key = 'eval_{}'.format(key) logs[eval_key] = value if metric_for_best is None: metric_for_best = key if best_epoch is None or best_performance[metric_for_best] < results[metric_for_best]: best_epoch = 'epoch-{}'.format(_ + 1) best_performance = results loss_scalar = (tr_loss - logging_loss) / args.logging_steps learning_rate_scalar = scheduler.get_lr()[0] logs['learning_rate'] = learning_rate_scalar logs['loss'] = loss_scalar logging_loss = tr_loss for key, value in logs.items(): tb_writer.add_scalar(key, value, global_step) print(json.dumps({**logs, **{'step': global_step}})) # Save model checkpoint output_dir = os.path.join(args.output_dir, 'epoch-{}'.format(_ + 1)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, 'training_args.bin')) logger.info("Saving model checkpoint to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() if best_epoch is not None: logger.info(" ***************** Best checkpoint: {}, choosed by {} *****************".format( best_epoch, metric_for_best)) logger.info("Best performance = %s" % json.dumps(best_performance)) save_best_result(best_epoch, best_performance, args.output_dir) return global_step, tr_loss / global_step def save_best_result(best_epoch, best_performance, output_dir): best_performance["checkpoint"] = best_epoch with open(os.path.join(output_dir, "best_performance.json"), mode="w") as writer: writer.write(json.dumps(best_performance, indent=2)) def evaluate(args, model, tokenizer, labels, pad_token_label_id, mode, prefix=""): eval_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode=mode) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu evaluate if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Eval! logger.info("***** Running evaluation %s *****", prefix) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None model.eval() for batch in tqdm(eval_dataloader, desc="Evaluating"): batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "xlnet", "adapterbert"] else None ) # XLM and RoBERTa don"t use segment_ids outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] if args.n_gpu > 1: tmp_eval_loss = tmp_eval_loss.mean() # mean() to average on multi-gpu parallel evaluating eval_loss += tmp_eval_loss.item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps preds = np.argmax(preds, axis=2) label_map = {i: label for i, label in enumerate(labels)} out_label_list = [[] for _ in range(out_label_ids.shape[0])] preds_list = [[] for _ in range(out_label_ids.shape[0])] for i in range(out_label_ids.shape[0]): for j in range(out_label_ids.shape[1]): if out_label_ids[i, j] != pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) results = { "loss": eval_loss, "precision": precision_score(out_label_list, preds_list), "recall": recall_score(out_label_list, preds_list), "f1": f1_score(out_label_list, preds_list), } logger.info("***** Eval results %s *****", prefix) for key in sorted(results.keys()): logger.info(" %s = %s", key, str(results[key])) output_file = os.path.join(args.output_dir, "eval_out.txt") with open(output_file, "w+", encoding="utf-8") as f: for line in tqdm(preds_list): line = " ".join(line) + "\n" f.write(line) return results, preds_list def test(args, model, tokenizer, labels, pad_token_label_id, mode, prefix=""): test_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode="test") args.test_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) test_sampler = SequentialSampler(test_dataset) if args.local_rank == -1 else DistributedSampler(test_dataset) test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=args.test_batch_size) if args.n_gpu > 1: model = torch.nn.DataParallel(model) logger.info("***** Running Prediction %s *****", prefix) logger.info(" Num examples = %d", len(test_dataset)) logger.info(" Batch size = %d", args.test_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None model.eval() for batch in tqdm(test_dataloader, desc="Prediction"): batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "xlnet","adapterbert"] else None ) # XLM and RoBERTa don"t use segment_ids outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] if args.n_gpu > 1: tmp_eval_loss = tmp_eval_loss.mean() # mean() to average on multi-gpu parallel evaluating eval_loss += tmp_eval_loss.item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps preds = np.argmax(preds, axis=2) label_map = {i: label for i, label in enumerate(labels)} out_label_list = [[] for _ in range(out_label_ids.shape[0])] preds_list = [[] for _ in range(out_label_ids.shape[0])] for i in range(out_label_ids.shape[0]): for j in range(out_label_ids.shape[1]): if out_label_ids[i, j] != pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) results = { "loss": eval_loss, "precision": precision_score(out_label_list, preds_list), "recall": recall_score(out_label_list, preds_list), "f1": f1_score(out_label_list, preds_list), } print(out_label_list[0]) print(preds_list[0]) out_file = os.path.join(args.output_dir, "predict.txt") logger.info("write results into {}".format(out_file)) output_eval_file = os.path.join(args.output_dir, "predict_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Predict results {} *****".format(prefix)) writer.write(json.dumps(results, indent=2)) logger.info("Result = %s" % json.dumps(results, indent=2)) with open(out_file, "w+", encoding="utf-8") as f: for line in preds_list: line = " ".join(line) + "\n" f.write(line) return results, preds_list def load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode): if args.local_rank not in [-1, 0] and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Load data features from cache or dataset file cached_features_file = os.path.join( args.data_dir, "cached_{}_{}_{}".format( mode, list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length) ), ) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", args.data_dir) examples = read_examples_from_file(args.data_dir, mode) features = convert_examples_to_features( examples, labels, args.max_seq_length, tokenizer, cls_token_at_end=bool(args.model_type in ["xlnet"]), # xlnet has a cls token at the end cls_token=tokenizer.cls_token, cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0, sep_token=tokenizer.sep_token, sep_token_extra=bool(args.model_type in ["roberta"]), # roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805 pad_on_left=bool(args.model_type in ["xlnet"]), # pad on the left for xlnet pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0], pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0, pad_token_label_id=pad_token_label_id, mode=mode, ) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) if args.local_rank == 0 and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long) dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) return dataset def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.") parser.add_argument("--model_type", default="unilm", type=str, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys())) parser.add_argument("--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS)) parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.") parser.add_argument('--disable_tqdm', action='store_true', help='Disable the tqdm bar. ') ## Other parameters parser.add_argument("--labels", default="", type=str, help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.") parser.add_argument("--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name") parser.add_argument("--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name") parser.add_argument("--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3") parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.") parser.add_argument("--evaluate_during_training", action='store_true', help="Rul evaluation during training at each logging step.") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument( "--keep_accents", action="store_const", const=True, help="Set this flag if model is trained with accents." ) parser.add_argument( "--strip_accents", action="store_const", const=True, help="Set this flag if model is trained without accents." ) parser.add_argument("--use_fast", action="store_const", const=True, help="Set this flag to use fast tokenization.") parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.") parser.add_argument("--warmup_ratio", default=0.1, type=float, help="Linear warmup over warmup_ratio.") parser.add_argument('--logging_steps', type=int, default=50, help="Log every X updates steps.") parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.") parser.add_argument("--eval_all_checkpoints", action='store_true', help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number") parser.add_argument("--no_cuda", action='store_true', help="Avoid using CUDA when available") parser.add_argument('--overwrite_output_dir', action='store_true', help="Overwrite the content of the output directory") parser.add_argument('--overwrite_cache', action='store_true', help="Overwrite the cached training and evaluation sets") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--metric_for_choose_best_checkpoint', type=str, default=None, help="Set the metric to choose the best checkpoint") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") parser.add_argument('--fp16_opt_level', type=str, default='O1', help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.") parser.add_argument('--server_port', type=str, default='', help="For distant debugging.") args = parser.parse_args() if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir: raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir)) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl') args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed set_seed(args) # Prepare CONLL-2003 task labels = get_labels(args.labels) num_labels = len(labels) # Use cross entropy ignore index as padding label id so that only real label ids contribute to the loss later pad_token_label_id = CrossEntropyLoss().ignore_index # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, id2label={str(i): label for i, label in enumerate(labels)}, label2id={label: i for i, label in enumerate(labels)}, cache_dir=args.cache_dir if args.cache_dir else None, ) tokenizer_args = {k: v for k, v in vars(args).items() if v is not None and k in TOKENIZER_ARGS} logger.info("Tokenizer arguments: %s", tokenizer_args) tokenizer_name = args.tokenizer_name if args.tokenizer_name else args.model_name_or_path tokenizer = tokenizer_class.from_pretrained( tokenizer_name, cache_dir=args.cache_dir if args.cache_dir else None, **tokenizer_args, ) if not hasattr(config, 'need_pooler') or config.need_pooler is not True: setattr(config, 'need_pooler', True) model = model_class.from_pretrained( args.model_name_or_path, config=config, cache_dir=args.cache_dir if args.cache_dir else None) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode="train") global_step, tr_loss = train(args, train_dataset, model, tokenizer, labels, pad_token_label_id) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) tokenizer.save_pretrained(args.output_dir) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Evaluation if args.do_eval and args.local_rank in [-1, 0]: tokenizer = tokenizer_class.from_pretrained(args.output_dir, **tokenizer_args) checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging logger.info("Evaluate the following checkpoints: %s", checkpoints) metric_for_best = args.metric_for_choose_best_checkpoint best_performance = None best_epoch = None for checkpoint in checkpoints: prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else "" checkpoint_config = config_class.from_pretrained(checkpoint) model = model_class.from_pretrained(checkpoint, config=checkpoint_config) model.to(args.device) result, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev", prefix=global_step) if metric_for_best is None: metric_for_best = list(result.keys())[-1] if best_epoch is None: best_epoch = checkpoint best_performance = result else: if best_performance[metric_for_best] < result[metric_for_best]: best_performance = result best_epoch = checkpoint if best_epoch is not None: logger.info(" ***************** Best checkpoint: {}, choosed by {} *****************".format( best_epoch, metric_for_best)) logger.info("Best performance = %s" % json.dumps(best_performance)) save_best_result(best_epoch, best_performance, args.output_dir) checkpoint = best_epoch checkpoint_config = config_class.from_pretrained(checkpoint) model = model_class.from_pretrained(checkpoint, config=checkpoint_config) model.to(args.device) result, _ = test(args, model, tokenizer, labels, pad_token_label_id, mode="test", prefix=global_step) if __name__ == "__main__": main()