# ------------------------------------------ # TextDiffuser-2: Unleashing the Power of Language Models for Text Rendering # Paper Link: https://arxiv.org/abs/2311.16465 # Code Link: https://github.com/microsoft/unilm/tree/master/textdiffuser-2 # Copyright (c) Microsoft Corporation. # ------------------------------------------ import argparse import logging import math import os import random import shutil from pathlib import Path import glob import time import datasets import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from datasets import load_dataset, Dataset from huggingface_hub import create_repo, upload_folder from packaging import version from torchvision import transforms from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer import diffusers from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel from diffusers.loaders import AttnProcsLayers from diffusers.models.attention_processor import LoRAAttnProcessor from diffusers.optimization import get_scheduler from diffusers.utils import check_min_version, is_wandb_available from diffusers.utils.import_utils import is_xformers_available from PIL import Image import string alphabet = string.digits + string.ascii_lowercase + string.ascii_uppercase + string.punctuation + ' ' # len(aphabet) = 95 '''alphabet 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ ''' logger = get_logger(__name__, log_level="INFO") def save_model_card(repo_id: str, images=None, base_model=str, dataset_name=str, repo_folder=None): img_str = "" for i, image in enumerate(images): image.save(os.path.join(repo_folder, f"image_{i}.png")) img_str += f"![img_{i}](./image_{i}.png)\n" yaml = f""" --- license: creativeml-openrail-m base_model: {base_model} tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- """ model_card = f""" # LoRA text2image fine-tuning - {repo_id} These are LoRA adaption weights for {base_model}. The weights were fine-tuned on the {dataset_name} dataset. You can find some example images in the following. \n {img_str} """ with open(os.path.join(repo_folder, "README.md"), "w") as f: f.write(yaml + model_card) def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--dataset_name", type=str, default='lambdalabs/pokemon-blip-captions', help=( "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," " or to a folder containing files that 🤗 Datasets can understand." ), ) parser.add_argument( "--output_dir", type=str, default="sd-model-finetuned-lora", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) parser.add_argument( "--rank", type=int, default=4, help=("The dimension of the LoRA update matrices."), ) parser.add_argument( "--vis_num", type=int, default=16, help=("The number of images to be visualized."), ) #### newly added parameters parser.add_argument( "--granularity", type=int, default=128, help="The granularity of coordinates, ranging from 1~512." ) parser.add_argument( "--coord_mode", type=str, default='lt', choices=['lt', 'center', 'ltrb'], help="The way to represent coordinates." ) parser.add_argument( "--max_length", default=77, type=int, help="Maximum length of the composed prompt." ) parser.add_argument( "--cfg", default=7, type=float, help="classifier free guidance." ) parser.add_argument( "--sample_steps", default=50, type=int, help="steps for sampling for diffusion models." ) parser.add_argument( "--input_format", required=True, type=str, help="specify the input format", choices=['prompt', 'prompts_txt_file', 'prompt_layout_txt_file'] ) parser.add_argument( "--input_prompt", type=str, ) parser.add_argument( "--input_file", type=str, ) parser.add_argument( "--prompts_txt_file", type=str, ) parser.add_argument( "--m1_model_path", type=str, help="the checkpoint of layout planner" ) args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank return args DATASET_NAME_MAPPING = { # "lambdalabs/pokemon-blip-captions": ("image", "text"), "MARIO-10M": ("image", "text"), } def main(): args = parse_args() logging_dir = Path(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) if args.report_to == "wandb": if not is_wandb_available(): raise ImportError("Make sure to install wandb if you want to use it for logging during training.") import wandb # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load scheduler, tokenizer and models. tokenizer = CLIPTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer" ) #### additional tokens are introduced, including coordinate tokens and character tokens print('***************') print(len(tokenizer)) for i in range(520): tokenizer.add_tokens(['l' + str(i) ]) # left tokenizer.add_tokens(['t' + str(i) ]) # top tokenizer.add_tokens(['r' + str(i) ]) # width tokenizer.add_tokens(['b' + str(i) ]) # height for c in alphabet: tokenizer.add_tokens([f'[{c}]']) print(len(tokenizer)) print('***************') if args.max_length == 77: text_encoder = CLIPTextModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", ignore_mismatched_sizes=True ) else: #### enlarge the context length of text encoder. empirically, enlarging the context length can proceed longer sequence. However, we observe that it will be hard to render general objects text_encoder = CLIPTextModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", max_position_embeddings=args.max_length, ignore_mismatched_sizes=True ) text_encoder.resize_token_embeddings(len(tokenizer)) vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet" ) # freeze parameters of models to save more memory unet.requires_grad_(False) vae.requires_grad_(False) text_encoder.requires_grad_(True) # For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision # as these weights are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move unet, vae and text_encoder to device and cast to weight_dtype unet.to(accelerator.device, dtype=weight_dtype) vae.to(accelerator.device, dtype=weight_dtype) # text_encoder.to(accelerator.device, dtype=weight_dtype) # now we will add new LoRA weights to the attention layers # It's important to realize here how many attention weights will be added and of which sizes # The sizes of the attention layers consist only of two different variables: # 1) - the "hidden_size", which is increased according to `unet.config.block_out_channels`. # 2) - the "cross attention size", which is set to `unet.config.cross_attention_dim`. # Let's first see how many attention processors we will have to set. # For Stable Diffusion, it should be equal to: # - down blocks (2x attention layers) * (2x transformer layers) * (3x down blocks) = 12 # - mid blocks (2x attention layers) * (1x transformer layers) * (1x mid blocks) = 2 # - up blocks (2x attention layers) * (3x transformer layers) * (3x down blocks) = 18 # => 32 layers # Set correct lora layers lora_attn_procs = {} for name in unet.attn_processors.keys(): cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim if name.startswith("mid_block"): hidden_size = unet.config.block_out_channels[-1] elif name.startswith("up_blocks"): block_id = int(name[len("up_blocks.")]) hidden_size = list(reversed(unet.config.block_out_channels))[block_id] elif name.startswith("down_blocks"): block_id = int(name[len("down_blocks.")]) hidden_size = unet.config.block_out_channels[block_id] lora_attn_procs[name] = LoRAAttnProcessor( hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=args.rank, ) unet.set_attn_processor(lora_attn_procs) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warn( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") lora_layers = AttnProcsLayers(unet.attn_processors) lora_layers, text_encoder = accelerator.prepare( lora_layers, text_encoder ) # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True # # We need to initialize the trackers we use, and also store our configuration. # # The trackers initializes automatically on the main process. # if accelerator.is_main_process: # accelerator.init_trackers("text2image-fine-tune", config=vars(args)) # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None else: accelerator.print(f"Resuming from checkpoint {path}") # accelerator.load_state(os.path.join(args.output_dir, path)) accelerator.load_state(args.resume_from_checkpoint) if accelerator.is_main_process and os.path.exists(f'{args.output_dir}'): print('detect existing output_dir, removing the contained jpg/txt files ...') os.system(f'rm {args.output_dir}/*.jpg') os.system(f'rm {args.output_dir}/*.txt') # user_prompt = "Book cover of summer vibe, high quality, high resolution" # ocrs = [ # 'Summer Vibe 20,20,100,40' # ] if args.input_format == 'prompt_layout_txt_file': lines = open(args.input_file).readlines() user_prompts = [lines[0].strip()] ocrs = [lines[1:]] elif args.input_format == 'prompt' or args.input_format == 'prompts_txt_file': #### prepare m1 (layout planner) from fastchat.model import load_model, get_conversation_template m1_model, m1_tokenizer = load_model( args.m1_model_path, 'cuda', 1, None, False, False, revision="main", debug=False, ) # prompt = 'a text image of hello world' prompts = [] if args.input_format == 'prompt': prompts = [args.input_prompt] elif args.input_format == 'prompts_txt_file': prompts = open(args.prompts_txt_file).readlines() print(f'there are {len(prompts)} samples for generation') ocrs = [] user_prompts = [] for prompt in prompts: user_prompt = prompt user_prompts.append(user_prompt) template = f'Given a prompt that will be used to generate an image, plan the layout of visual text for the image. The size of the image is 128x128. Therefore, all properties of the positions should not exceed 128, including the coordinates of top, left, right, and bottom. All keywords are included in the caption. You dont need to specify the details of font styles. At each line, the format should be keyword left, top, right, bottom. So let us begin. Prompt: {user_prompt}' msg = template conv = get_conversation_template(args.m1_model_path) conv.append_message(conv.roles[0], msg) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() inputs = m1_tokenizer([prompt], return_token_type_ids=False) inputs = {k: torch.tensor(v).to('cuda') for k, v in inputs.items()} output_ids = m1_model.generate( **inputs, do_sample=True, temperature=0.7, repetition_penalty=1.0, max_new_tokens=512, ) if m1_model.config.is_encoder_decoder: output_ids = output_ids[0] else: output_ids = output_ids[0][len(inputs["input_ids"][0]) :] outputs = m1_tokenizer.decode( output_ids, skip_special_tokens=True, spaces_between_special_tokens=False ) print(f"[{conv.roles[0]}]\n{msg}") print(f"[{conv.roles[1]}]\n{outputs}") # ocrs = outputs.split('\n') ocrs.append(outputs.split('\n')) with torch.no_grad(): size = len(ocrs) print(f'the number of samples: {size}') time_seed = int(time.time()) random.seed(time_seed) torch.manual_seed(time_seed) torch.cuda.manual_seed_all(time_seed) for sample_index in range(size): user_prompt = user_prompts[sample_index] current_ocr = ocrs[sample_index] ocr_ids = [] print('user_prompt', user_prompt) print('current_ocr', current_ocr) for ocr in current_ocr: ocr = ocr.strip() if len(ocr) == 0 or '###' in ocr or '.com' in ocr: continue items = ocr.split() pred = ' '.join(items[:-1]) box = items[-1] l,t,r,b = box.split(',') l,t,r,b = int(l), int(t), int(r), int(b) ocr_ids.extend(['l'+str(l), 't'+str(t), 'r'+str(r), 'b'+str(b)]) char_list = list(pred) char_list = [f'[{i}]' for i in char_list] ocr_ids.extend(char_list) ocr_ids.append(tokenizer.eos_token_id) caption_ids = tokenizer( user_prompt, truncation=True, return_tensors="pt" ).input_ids[0].tolist() try: ocr_ids = tokenizer.encode(ocr_ids) prompt = caption_ids + ocr_ids except: prompt = caption_ids prompt = prompt[:args.max_length] while len(prompt) < args.max_length: prompt.append(tokenizer.pad_token_id) prompts_cond = prompt prompts_nocond = [tokenizer.pad_token_id]*args.max_length prompts_cond = [prompts_cond] * args.vis_num prompts_nocond = [prompts_nocond] * args.vis_num prompts_cond = torch.Tensor(prompts_cond).long().cuda() prompts_nocond = torch.Tensor(prompts_nocond).long().cuda() scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") scheduler.set_timesteps(args.sample_steps) noise = torch.randn((args.vis_num, 4, 64, 64)).to("cuda") input = noise encoder_hidden_states_cond = text_encoder(prompts_cond)[0] encoder_hidden_states_nocond = text_encoder(prompts_nocond)[0] texts = prompts_cond f = open(f'{args.output_dir}/prompt_{sample_index}_{args.local_rank}.txt', 'w+') for text in texts: sentence = tokenizer.decode(text) f.write(sentence + '\n') f.close() for t in tqdm(scheduler.timesteps): with torch.no_grad(): # classifier free guidance noise_pred_cond = unet(sample=input.half(), timestep=t, encoder_hidden_states=encoder_hidden_states_cond[:args.vis_num]).sample # b, 4, 64, 64 noise_pred_uncond = unet(sample=input.half(), timestep=t, encoder_hidden_states=encoder_hidden_states_nocond[:args.vis_num]).sample # b, 4, 64, 64 noisy_residual = noise_pred_uncond + args.cfg * (noise_pred_cond - noise_pred_uncond) # b, 4, 64, 64 prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample input = prev_noisy_sample # decode input = 1 / vae.config.scaling_factor * input images = vae.decode(input.half(), return_dict=False)[0] width, height = 512, 512 new_image = Image.new('RGB', (4*width, 4*height)) for index, image in enumerate(images.float()): image = (image / 2 + 0.5).clamp(0, 1).unsqueeze(0) image = image.cpu().permute(0, 2, 3, 1).numpy()[0] image = Image.fromarray((image * 255).round().astype("uint8")).convert('RGB') row = index // 4 col = index % 4 new_image.paste(image, (col*width, row*height)) new_image.save(f'{args.output_dir}/pred_img_{sample_index}_{args.local_rank}.jpg') if __name__ == "__main__": main()