Tzktz's picture
Upload 7664 files
6fc683c verified
import ast
import logging
import os
import os.path as op
import sys
from argparse import Namespace
import numpy as np
import torch
from fairseq import checkpoint_utils, options, tasks, utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.logging import progress_bar
from omegaconf import DictConfig
# define function for plot prob and att_ws
def _plot_and_save(array, figname, figsize=(6, 4), dpi=150):
import matplotlib.pyplot as plt
shape = array.shape
if len(shape) == 1:
# for eos probability
plt.figure(figsize=figsize, dpi=dpi)
plt.plot(array)
plt.xlabel("Frame")
plt.ylabel("Probability")
plt.ylim([0, 1])
elif len(shape) == 2:
# for tacotron 2 attention weights, whose shape is (out_length, in_length)
plt.figure(figsize=figsize, dpi=dpi)
plt.imshow(array, aspect="auto")
elif len(shape) == 4:
# for transformer attention weights,
# whose shape is (#leyers, #heads, out_length, in_length)
plt.figure(figsize=(figsize[0] * shape[0], figsize[1] * shape[1]), dpi=dpi)
for idx1, xs in enumerate(array):
for idx2, x in enumerate(xs, 1):
plt.subplot(shape[0], shape[1], idx1 * shape[1] + idx2)
plt.imshow(x, aspect="auto")
plt.xlabel("Input")
plt.ylabel("Output")
else:
raise NotImplementedError("Support only from 1D to 4D array.")
plt.tight_layout()
if not op.exists(op.dirname(figname)):
# NOTE: exist_ok = True is needed for parallel process decoding
os.makedirs(op.dirname(figname), exist_ok=True)
plt.savefig(figname)
plt.close()
# define function to calculate focus rate
# (see section 3.3 in https://arxiv.org/abs/1905.09263)
def _calculate_focus_rete(att_ws):
if att_ws is None:
# fastspeech case -> None
return 1.0
elif len(att_ws.shape) == 2:
# tacotron 2 case -> (L, T)
return float(att_ws.max(dim=-1)[0].mean())
elif len(att_ws.shape) == 4:
# transformer case -> (#layers, #heads, L, T)
return float(att_ws.max(dim=-1)[0].mean(dim=-1).max())
else:
raise ValueError("att_ws should be 2 or 4 dimensional tensor.")
def main(cfg: DictConfig):
if isinstance(cfg, Namespace):
cfg = convert_namespace_to_omegaconf(cfg)
assert cfg.common_eval.path is not None, "--path required for generation!"
assert (
cfg.generation.replace_unk is None or cfg.dataset.dataset_impl == "raw"
), "--replace-unk requires a raw text dataset (--dataset-impl=raw)"
if cfg.common_eval.results_path is not None:
os.makedirs(cfg.common_eval.results_path, exist_ok=True)
return _main(cfg, sys.stdout)
def _main(cfg: DictConfig, output_file):
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=output_file,
)
logger = logging.getLogger("speecht5.generate_speech")
utils.import_user_module(cfg.common)
assert cfg.dataset.batch_size == 1, "only support batch size 1"
logger.info(cfg)
# Fix seed for stochastic decoding
if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
np.random.seed(cfg.common.seed)
utils.set_torch_seed(cfg.common.seed)
use_cuda = torch.cuda.is_available() and not cfg.common.cpu
if not use_cuda:
logger.info("generate speech on cpu")
# build task
task = tasks.setup_task(cfg.task)
# Load ensemble
logger.info("loading model(s) from {}".format(cfg.common_eval.path))
overrides = ast.literal_eval(cfg.common_eval.model_overrides)
models, saved_cfg = checkpoint_utils.load_model_ensemble(
utils.split_paths(cfg.common_eval.path),
arg_overrides=overrides,
task=task,
suffix=cfg.checkpoint.checkpoint_suffix,
strict=(cfg.checkpoint.checkpoint_shard_count == 1),
num_shards=cfg.checkpoint.checkpoint_shard_count,
)
logger.info(saved_cfg)
# loading the dataset should happen after the checkpoint has been loaded so we can give it the saved task config
task.load_dataset(cfg.dataset.gen_subset, task_cfg=saved_cfg.task)
# optimize ensemble for generation
for model in models:
if model is None:
continue
if cfg.common.fp16:
model.half()
if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
model.cuda()
model.prepare_for_inference_(cfg)
# load dataset (possibly sharded)
itr = task.get_batch_iterator(
dataset=task.dataset(cfg.dataset.gen_subset),
max_tokens=cfg.dataset.max_tokens,
max_sentences=cfg.dataset.batch_size,
max_positions=None,
ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=cfg.dataset.required_batch_size_multiple,
seed=cfg.common.seed,
num_shards=cfg.distributed_training.distributed_world_size,
shard_id=cfg.distributed_training.distributed_rank,
num_workers=cfg.dataset.num_workers,
data_buffer_size=cfg.dataset.data_buffer_size,
).next_epoch_itr(shuffle=False)
progress = progress_bar.progress_bar(
itr,
log_format=cfg.common.log_format,
log_interval=cfg.common.log_interval,
default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
)
for i, sample in enumerate(progress):
if "net_input" not in sample:
continue
sample = utils.move_to_cuda(sample) if use_cuda else sample
outs, _, attn = task.generate_speech(
models,
sample["net_input"],
)
focus_rate = _calculate_focus_rete(attn)
outs = outs.cpu().numpy()
audio_name = op.basename(sample['name'][0])
np.save(op.join(cfg.common_eval.results_path, audio_name.replace(".wav", "-feats.npy")), outs)
logging.info(
"{} (size: {}->{} ({}), focus rate: {:.3f})".format(
sample['name'][0],
sample['src_lengths'][0].item(),
outs.shape[0],
sample['dec_target_lengths'][0].item(),
focus_rate
)
)
if i < 6 and attn is not None:
import shutil
demo_dir = op.join(op.dirname(cfg.common_eval.results_path), "demo")
audio_dir = op.join(demo_dir, "audio")
os.makedirs(audio_dir, exist_ok=True)
shutil.copy(op.join(task.dataset(cfg.dataset.gen_subset).audio_root, sample['tgt_name'][0] if "tgt_name" in sample else sample['name'][0]), op.join(audio_dir, audio_name))
att_dir = op.join(demo_dir, "att_ws")
_plot_and_save(attn.cpu().numpy(), op.join(att_dir, f"{audio_name}_att_ws.png"))
spec_dir = op.join(demo_dir, "spec")
_plot_and_save(outs.T, op.join(spec_dir, f"{audio_name}_gen.png"))
_plot_and_save(sample["target"][0].cpu().numpy().T, op.join(spec_dir, f"{audio_name}_ori.png"))
def cli_main():
parser = options.get_generation_parser()
args = options.parse_args_and_arch(parser)
main(args)
if __name__ == "__main__":
cli_main()