Spaces:
Sleeping
Sleeping
import gc | |
import PIL.Image | |
import numpy as np | |
import torch | |
from controlnet_aux import (CannyDetector, ContentShuffleDetector, HEDdetector, LineartAnimeDetector, LineartDetector, | |
MidasDetector, MLSDdetector, NormalBaeDetector, OpenposeDetector, PidiNetDetector) | |
from controlnet_aux.util import HWC3 | |
from controlnet.cv_utils import resize_image | |
from controlnet.depth_estimator import DepthEstimator | |
from controlnet.image_segmentor import ImageSegmentor | |
class ControlNet_Preprocessor: | |
MODEL_ID = 'lllyasviel/Annotators' | |
def __init__(self): | |
self.model = None | |
self.name = '' | |
def load(self, name: str) -> None: | |
if name == self.name: | |
return | |
if name == 'HED': | |
self.model = HEDdetector.from_pretrained(self.MODEL_ID) | |
elif name == 'Midas': | |
self.model = MidasDetector.from_pretrained(self.MODEL_ID) | |
elif name == 'MLSD': | |
self.model = MLSDdetector.from_pretrained(self.MODEL_ID) | |
elif name == 'Openpose': | |
self.model = OpenposeDetector.from_pretrained(self.MODEL_ID) | |
elif name == 'PidiNet': | |
self.model = PidiNetDetector.from_pretrained(self.MODEL_ID) | |
elif name == 'NormalBae': | |
self.model = NormalBaeDetector.from_pretrained(self.MODEL_ID) | |
elif name == 'Lineart': | |
self.model = LineartDetector.from_pretrained(self.MODEL_ID) | |
elif name == 'LineartAnime': | |
self.model = LineartAnimeDetector.from_pretrained(self.MODEL_ID) | |
elif name == 'Canny': | |
self.model = CannyDetector() | |
elif name == 'ContentShuffle': | |
self.model = ContentShuffleDetector() | |
elif name == 'DPT': | |
self.model = DepthEstimator() | |
elif name == 'UPerNet': | |
self.model = ImageSegmentor() | |
else: | |
raise ValueError | |
torch.cuda.empty_cache() | |
gc.collect() | |
self.name = name | |
def __call__(self, image: PIL.Image.Image, **kwargs) -> PIL.Image.Image: | |
if self.name == 'Canny': | |
if 'detect_resolution' in kwargs: | |
detect_resolution = kwargs.pop('detect_resolution') | |
image = np.array(image) | |
image = HWC3(image) | |
image = resize_image(image, resolution=detect_resolution) | |
image = self.model(image, **kwargs) | |
return PIL.Image.fromarray(image) | |
elif self.name == 'Midas': | |
detect_resolution = kwargs.pop('detect_resolution', 512) | |
image_resolution = kwargs.pop('image_resolution', 512) | |
image = np.array(image) | |
image = HWC3(image) | |
image = resize_image(image, resolution=detect_resolution) | |
image = self.model(image, **kwargs) | |
image = HWC3(image) | |
image = resize_image(image, resolution=image_resolution) | |
return PIL.Image.fromarray(image) | |
else: | |
image = np.array(image) | |
return self.model(image, **kwargs) | |
def preprocess_canny(self, image, image_resolution, low_threshold, high_threshold): | |
self.load('Canny') | |
control_image = self( | |
image=image, | |
low_threshold=low_threshold, | |
high_threshold=high_threshold, | |
detect_resolution=image_resolution | |
) | |
return control_image | |
def preprocess_mlsd(self, image, image_resolution, preprocess_resolution, value_threshold, distance_threshold): | |
self.load('MLSD') | |
control_image = self( | |
image=image, | |
image_resolution=image_resolution, | |
detect_resolution=preprocess_resolution, | |
thr_v=value_threshold, | |
thr_d=distance_threshold, | |
) | |
return control_image | |
def preprocess_scribble(self, image, image_resolution, preprocess_resolution, preprocessor_name): | |
if preprocessor_name == 'None': | |
image = HWC3(image) | |
image = resize_image(image, resolution=image_resolution) | |
control_image = PIL.Image.fromarray(image) | |
elif preprocessor_name == 'HED': | |
self.load(preprocessor_name) | |
control_image = self( | |
image=image, | |
image_resolution=image_resolution, | |
detect_resolution=preprocess_resolution, | |
scribble=False, | |
) | |
elif preprocessor_name == 'PidiNet': | |
self.load(preprocessor_name) | |
control_image = self( | |
image=image, | |
image_resolution=image_resolution, | |
detect_resolution=preprocess_resolution, | |
safe=False, | |
) | |
else: | |
raise ValueError | |
return control_image | |
def preprocess_scribble_interactive(self, image_and_mask, image_resolution): | |
image = image_and_mask['mask'] | |
image = HWC3(image) | |
image = resize_image(image, resolution=image_resolution) | |
control_image = PIL.Image.fromarray(image) | |
return control_image | |
def preprocess_softedge(self, image, image_resolution, preprocess_resolution, preprocessor_name): | |
if preprocessor_name == 'None': | |
image = HWC3(image) | |
image = resize_image(image, resolution=image_resolution) | |
control_image = PIL.Image.fromarray(image) | |
elif preprocessor_name in ['HED', 'HED safe']: | |
safe = 'safe' in preprocessor_name | |
self.load('HED') | |
control_image = self( | |
image=image, | |
image_resolution=image_resolution, | |
detect_resolution=preprocess_resolution, | |
scribble=safe, | |
) | |
elif preprocessor_name in ['PidiNet', 'PidiNet safe']: | |
safe = 'safe' in preprocessor_name | |
self.load('PidiNet') | |
control_image = self( | |
image=image, | |
image_resolution=image_resolution, | |
detect_resolution=preprocess_resolution, | |
safe=safe, | |
) | |
else: | |
raise ValueError | |
return control_image | |
def preprocess_openpose(self, image, image_resolution, preprocess_resolution, preprocessor_name): | |
if preprocessor_name == 'None': | |
image = HWC3(image) | |
image = resize_image(image, resolution=image_resolution) | |
control_image = PIL.Image.fromarray(image) | |
else: | |
self.load('Openpose') | |
control_image = self( | |
image=image, | |
image_resolution=image_resolution, | |
detect_resolution=preprocess_resolution, | |
hand_and_face=True, | |
) | |
return control_image | |
def preprocess_segmentation(self, image, image_resolution, preprocess_resolution, preprocessor_name): | |
if preprocessor_name == 'None': | |
image = HWC3(image) | |
image = resize_image(image, resolution=image_resolution) | |
control_image = PIL.Image.fromarray(image) | |
else: | |
self.load(preprocessor_name) | |
control_image = self( | |
image=image, | |
image_resolution=image_resolution, | |
detect_resolution=preprocess_resolution, | |
) | |
return control_image | |
def preprocess_depth(self, image, image_resolution, preprocess_resolution, preprocessor_name): | |
if preprocessor_name == 'None': | |
image = HWC3(image) | |
image = resize_image(image, resolution=image_resolution) | |
control_image = PIL.Image.fromarray(image) | |
else: | |
self.load(preprocessor_name) | |
control_image = self( | |
image=image, | |
image_resolution=image_resolution, | |
detect_resolution=preprocess_resolution, | |
) | |
return control_image | |
def preprocess_normal(self, image, image_resolution, preprocess_resolution, preprocessor_name): | |
if preprocessor_name == 'None': | |
image = HWC3(image) | |
image = resize_image(image, resolution=image_resolution) | |
control_image = PIL.Image.fromarray(image) | |
else: | |
self.load('NormalBae') | |
control_image = self( | |
image=image, | |
image_resolution=image_resolution, | |
detect_resolution=preprocess_resolution, | |
) | |
return control_image | |
def preprocess_lineart(self, image, image_resolution, preprocess_resolution, preprocessor_name): | |
if preprocessor_name in ['None', 'None (anime)']: | |
image = HWC3(image) | |
image = resize_image(image, resolution=image_resolution) | |
control_image = PIL.Image.fromarray(image) | |
elif preprocessor_name in ['Lineart', 'Lineart coarse']: | |
coarse = 'coarse' in preprocessor_name | |
self.load('Lineart') | |
control_image = self( | |
image=image, | |
image_resolution=image_resolution, | |
detect_resolution=preprocess_resolution, | |
coarse=coarse, | |
) | |
elif preprocessor_name == 'Lineart (anime)': | |
self.load('LineartAnime') | |
control_image = self( | |
image=image, | |
image_resolution=image_resolution, | |
detect_resolution=preprocess_resolution, | |
) | |
else: | |
raise ValueError | |
return control_image | |
def preprocess_shuffle(self, image, image_resolution, preprocessor_name): | |
if preprocessor_name == 'None': | |
image = HWC3(image) | |
image = resize_image(image, resolution=image_resolution) | |
control_image = PIL.Image.fromarray(image) | |
else: | |
self.load(preprocessor_name) | |
control_image = self( | |
image=image, | |
image_resolution=image_resolution, | |
) | |
return control_image | |
def preprocess_ip2p(self, image, image_resolution): | |
image = HWC3(image) | |
image = resize_image(image, resolution=image_resolution) | |
control_image = PIL.Image.fromarray(image) | |
return control_image | |