Spaces:
Sleeping
Sleeping
#!/usr/bin/env python3 -u | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
""" | |
Translate raw text with a trained model. Batches data on-the-fly. | |
""" | |
import sys | |
sys.path.append( '.' ) | |
import unilm | |
import ast | |
import fileinput | |
import logging | |
import math | |
import os | |
import sys | |
import time | |
import re | |
from argparse import Namespace | |
from collections import namedtuple | |
import numpy as np | |
import torch | |
from fairseq import checkpoint_utils, distributed_utils, options, tasks, utils | |
from fairseq.dataclass.configs import FairseqConfig | |
from fairseq.dataclass.utils import convert_namespace_to_omegaconf | |
from fairseq.token_generation_constraints import pack_constraints, unpack_constraints | |
from fairseq_cli.generate import get_symbols_to_strip_from_output | |
import sentencepiece as spm | |
from torchvision import transforms | |
from PIL import Image | |
# This is simple maximum entropy normalization performed in Inception paper | |
inception_normalize = transforms.Compose( | |
[transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])] | |
) | |
def square_transform(size=224): | |
return transforms.Compose( | |
[ | |
transforms.Resize((size, size), interpolation=transforms.InterpolationMode.BICUBIC), | |
transforms.ToTensor(), | |
inception_normalize, | |
] | |
) | |
def split_string(string, separators): | |
""" | |
Function to split a given string based on a list of separators. | |
Args: | |
string (str): The input string to be split. | |
separators (list): A list of separators to be used for splitting the string. | |
Returns: | |
A list containing the split string with separators included. | |
""" | |
pattern = "|".join(re.escape(separator) for separator in separators) | |
result = re.split(f'({pattern})', string) | |
return [elem for elem in result if elem] | |
logging.basicConfig( | |
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", | |
datefmt="%Y-%m-%d %H:%M:%S", | |
level=os.environ.get("LOGLEVEL", "INFO").upper(), | |
stream=sys.stdout, | |
) | |
logger = logging.getLogger("fairseq_cli.interactive") | |
Batch = namedtuple("Batch", "ids src_tokens src_lengths constraints img_src_tokens img_gpt_input_mask") | |
Translation = namedtuple("Translation", "src_str hypos pos_scores alignments") | |
def buffered_read(input, buffer_size): | |
buffer = [] | |
with fileinput.input(files=[input], openhook=fileinput.hook_encoded("utf-8")) as h: | |
for src_str in h: | |
buffer.append(src_str.strip()) | |
if len(buffer) >= buffer_size: | |
yield buffer | |
buffer = [] | |
if len(buffer) > 0: | |
yield buffer | |
def get_interactive_tokens_and_lengths(self, lines, encode_fn, tokenizer=None): | |
""" | |
line format: [image]path<tab>text<tab>[image]path | |
model input: `<s> <image> image hidden </image> My cat looking very dignified.</s>` | |
""" | |
image_feature_length = self.args.image_feature_length | |
bos_id = self.dictionary.bos() | |
eos_id = self.dictionary.eos() | |
boi_id = self.dictionary.index("<image>") | |
eoi_id = self.dictionary.index("</image>") | |
def convert_one_line(input_str): | |
# TODO: input interleave image and text | |
token = [] | |
img_src_token = [] | |
img_gpt_input_mask = [] | |
segments = input_str.split('<tab>') | |
token.append(bos_id) | |
img_gpt_input_mask.append(0) | |
for i, segment in enumerate(segments): | |
if segment.startswith('[image]'): | |
image_path = segment[7:] | |
# read image and transform to tensor | |
image = Image.open(image_path).convert("RGB") | |
image_tensor = square_transform(self.args.input_resolution)(image) | |
img_src_token.append(image_tensor) | |
# token.extend([boi_id] + [boi_id] * image_feature_length + [eoi_id]) | |
token.extend([boi_id] + list(range(4, image_feature_length+4)) + [eoi_id]) | |
img_gpt_input_mask.extend([0] + [1] * image_feature_length + [0]) | |
else: | |
special_tokens = [self.source_dictionary[idx] for idx in range(tokenizer.vocab_size(), | |
len(self.source_dictionary))] | |
split_special_token_words = [] | |
split_resutls = split_string(segment, special_tokens) | |
for string in split_resutls: | |
if string in special_tokens: | |
split_special_token_words.append(string) | |
else: | |
encode_tokens = tokenizer.encode(string, out_type=str) | |
split_special_token_words.extend(encode_tokens) | |
segment = ' '.join(split_special_token_words) | |
text_tokens = self.source_dictionary.encode_line( | |
encode_fn(segment), add_if_not_exist=False | |
).tolist() | |
text_tokens = text_tokens[:-1] # </s> in token | |
token.extend(text_tokens) | |
img_gpt_input_mask.extend([0] * (len(text_tokens))) # </s> in token | |
token.append(eos_id) | |
# img_gpt_input_mask = img_gpt_input_mask[:-1] | |
assert len(token) == len(img_gpt_input_mask) + 1 | |
token = torch.LongTensor(token) | |
img_gpt_input_mask = torch.LongTensor(img_gpt_input_mask) | |
img_src_token = torch.stack(img_src_token, dim=0) | |
return token, img_src_token, img_gpt_input_mask | |
tokens = [] | |
img_src_tokens = [] | |
img_gpt_input_masks = [] | |
for src_str in lines: | |
token, img_src_token, img_gpt_input_mask = convert_one_line(src_str) | |
tokens.append(token) | |
img_src_tokens.append(img_src_token) | |
img_gpt_input_masks.append(img_gpt_input_mask) | |
lengths = [t.numel() for t in tokens] | |
return tokens, lengths, img_src_tokens, img_gpt_input_masks | |
def make_batches(lines, cfg, task, max_positions, encode_fn): | |
def encode_fn_target(x): | |
return encode_fn(x) | |
if cfg.generation.constraints: | |
# Strip (tab-delimited) contraints, if present, from input lines, | |
# store them in batch_constraints | |
batch_constraints = [list() for _ in lines] | |
for i, line in enumerate(lines): | |
if "\t" in line: | |
lines[i], *batch_constraints[i] = line.split("\t") | |
# Convert each List[str] to List[Tensor] | |
for i, constraint_list in enumerate(batch_constraints): | |
batch_constraints[i] = [ | |
task.target_dictionary.encode_line( | |
encode_fn_target(constraint), | |
append_eos=False, | |
add_if_not_exist=False, | |
) | |
for constraint in constraint_list | |
] | |
if cfg.generation.constraints: | |
constraints_tensor = pack_constraints(batch_constraints) | |
else: | |
constraints_tensor = None | |
tokenizer = spm.SentencePieceProcessor() | |
if os.path.exists('data/sentencepiece.bpe.model'): | |
tokenizer.Load('data/sentencepiece.bpe.model') | |
else: | |
tokenizer = None | |
tokens, lengths, img_src_tokens, img_gpt_input_mask = get_interactive_tokens_and_lengths(task, lines, encode_fn, tokenizer) | |
itr = task.get_batch_iterator( | |
dataset=task.build_dataset_for_caption_inference( | |
tokens, lengths, img_src_tokens, img_gpt_input_mask, constraints=constraints_tensor | |
), | |
max_tokens=cfg.dataset.max_tokens, | |
max_sentences=cfg.dataset.batch_size, | |
max_positions=max_positions, | |
ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test, | |
).next_epoch_itr(shuffle=False) | |
for batch in itr: | |
ids = batch["id"] | |
src_tokens = batch["net_input"]["src_tokens"] | |
src_lengths = batch["net_input"]["src_lengths"] | |
img_src_tokens = batch["net_input"]["img_src_tokens"] | |
img_gpt_input_mask = batch["net_input"]["img_gpt_input_mask"] | |
constraints = batch.get("constraints", None) | |
yield Batch( | |
ids=ids, | |
src_tokens=src_tokens, | |
src_lengths=src_lengths, | |
img_src_tokens=img_src_tokens, | |
img_gpt_input_mask=img_gpt_input_mask, | |
constraints=constraints, | |
) | |
def main(cfg: FairseqConfig): | |
if isinstance(cfg, Namespace): | |
cfg = convert_namespace_to_omegaconf(cfg) | |
start_time = time.time() | |
total_translate_time = 0 | |
utils.import_user_module(cfg.common) | |
if cfg.interactive.buffer_size < 1: | |
cfg.interactive.buffer_size = 1 | |
if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None: | |
cfg.dataset.batch_size = 1 | |
assert ( | |
not cfg.generation.sampling or cfg.generation.nbest == cfg.generation.beam | |
), "--sampling requires --nbest to be equal to --beam" | |
assert ( | |
not cfg.dataset.batch_size | |
or cfg.dataset.batch_size <= cfg.interactive.buffer_size | |
), "--batch-size cannot be larger than --buffer-size" | |
logger.info(cfg) | |
# Fix seed for stochastic decoding | |
if cfg.common.seed is not None and not cfg.generation.no_seed_provided: | |
np.random.seed(cfg.common.seed) | |
utils.set_torch_seed(cfg.common.seed) | |
use_cuda = torch.cuda.is_available() and not cfg.common.cpu | |
# Setup task, e.g., translation | |
logger.info("Task: {}".format(cfg.task)) | |
task = tasks.setup_task(cfg.task) | |
# Load ensemble | |
overrides = ast.literal_eval(cfg.common_eval.model_overrides) | |
logger.info("loading model(s) from {}".format(cfg.common_eval.path)) | |
models, _model_args = checkpoint_utils.load_model_ensemble( | |
utils.split_paths(cfg.common_eval.path), | |
arg_overrides=overrides, | |
task=task, | |
suffix=cfg.checkpoint.checkpoint_suffix, | |
strict=(cfg.checkpoint.checkpoint_shard_count == 1), | |
num_shards=cfg.checkpoint.checkpoint_shard_count, | |
) | |
# Set dictionaries | |
src_dict = task.source_dictionary | |
tgt_dict = task.target_dictionary | |
# Optimize ensemble for generation | |
for model in models: | |
if model is None: | |
continue | |
if cfg.common.fp16: | |
model.half() | |
if use_cuda and not cfg.distributed_training.pipeline_model_parallel: | |
model.cuda() | |
model.prepare_for_inference_(cfg) | |
# Initialize generator | |
generator = task.build_generator(models, cfg.generation) | |
# Handle tokenization and BPE | |
tokenizer = task.build_tokenizer(cfg.tokenizer) | |
bpe = task.build_bpe(cfg.bpe) | |
def encode_fn(x): | |
if tokenizer is not None: | |
x = tokenizer.encode(x) | |
if bpe is not None: | |
x = bpe.encode(x) | |
return x | |
def decode_fn(x): | |
if bpe is not None: | |
x = bpe.decode(x) | |
if tokenizer is not None: | |
x = tokenizer.decode(x) | |
return x | |
# Load alignment dictionary for unknown word replacement | |
# (None if no unknown word replacement, empty if no path to align dictionary) | |
align_dict = utils.load_align_dict(cfg.generation.replace_unk) | |
max_positions = utils.resolve_max_positions( | |
task.max_positions(), *[model.max_positions() for model in models] | |
) | |
if cfg.generation.constraints: | |
logger.warning( | |
"NOTE: Constrained decoding currently assumes a shared subword vocabulary." | |
) | |
if cfg.interactive.buffer_size > 1: | |
logger.info("Sentence buffer size: %s", cfg.interactive.buffer_size) | |
logger.info("NOTE: hypothesis and token scores are output in base 2") | |
logger.info("Type the input sentence and press return:") | |
start_id = 0 | |
for inputs in buffered_read(cfg.interactive.input, cfg.interactive.buffer_size): | |
print("inputs", inputs) | |
results = [] | |
for batch in make_batches(inputs, cfg, task, max_positions, encode_fn): | |
bsz = batch.src_tokens.size(0) | |
src_tokens = batch.src_tokens | |
src_lengths = batch.src_lengths | |
if generator.max_len_b > 2000: # use too long max_len_b to implement dynamic max_len_b | |
generator.max_len_b = src_lengths.max().item() + generator.max_len_b - 2000 | |
img_src_tokens = batch.img_src_tokens | |
img_gpt_input_mask = batch.img_gpt_input_mask | |
constraints = batch.constraints | |
if use_cuda: | |
src_tokens = src_tokens.cuda() | |
src_lengths = src_lengths.cuda() | |
if constraints is not None: | |
constraints = constraints.cuda() | |
sample = { | |
"net_input": { | |
"src_tokens": src_tokens, | |
"src_lengths": src_lengths, | |
"img_src_tokens": img_src_tokens, | |
"img_gpt_input_mask": img_gpt_input_mask, | |
}, | |
} | |
translate_start_time = time.time() | |
translations = task.inference_step( | |
generator, models, sample, constraints=constraints | |
) | |
translate_time = time.time() - translate_start_time | |
total_translate_time += translate_time | |
list_constraints = [[] for _ in range(bsz)] | |
if cfg.generation.constraints: | |
list_constraints = [unpack_constraints(c) for c in constraints] | |
for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)): | |
src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad()) | |
constraints = list_constraints[i] | |
results.append( | |
( | |
start_id + id, | |
src_tokens_i, | |
hypos, | |
{ | |
"constraints": constraints, | |
"time": translate_time / len(translations), | |
}, | |
) | |
) | |
# sort output to match input order | |
for id_, src_tokens, hypos, info in sorted(results, key=lambda x: x[0]): | |
src_str = "" | |
if src_dict is not None: | |
# print(src_tokens) | |
src_str = src_dict.string(src_tokens, cfg.common_eval.post_process) | |
print("S-{}\t{}".format(id_, src_str)) | |
print("ST-{}\t{}".format(id_, src_tokens.int().cpu().tolist())) | |
print("W-{}\t{:.3f}\tseconds".format(id_, info["time"])) | |
for constraint in info["constraints"]: | |
print( | |
"C-{}\t{}".format( | |
id_, | |
tgt_dict.string(constraint, cfg.common_eval.post_process), | |
) | |
) | |
# Process top predictions | |
for hypo in hypos[: min(len(hypos), cfg.generation.nbest)]: | |
# hypo_tokens, hypo_str, alignment = utils.post_process_prediction( | |
hypo_tokens, hypo_str, alignment = post_process_prediction( | |
hypo_tokens=hypo["tokens"].int().cpu(), | |
src_str=src_str, | |
alignment=hypo["alignment"], | |
align_dict=align_dict, | |
tgt_dict=tgt_dict, | |
remove_bpe=cfg.common_eval.post_process, | |
extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator), | |
) | |
detok_hypo_str = decode_fn(hypo_str) | |
score = hypo["score"] / math.log(2) # convert to base 2 | |
# original hypothesis (after tokenization and BPE) | |
print("HT-{}\t{}\t{}".format(id_, score, hypo["tokens"].int().cpu().tolist())) | |
print("H-{}\t{}\t{}".format(id_, score, hypo_str)) | |
# detokenized hypothesis | |
print("D-{}\t{}\t{}".format(id_, score, detok_hypo_str)) | |
print( | |
"P-{}\t{}".format( | |
id_, | |
" ".join( | |
map( | |
lambda x: "{:.4f}".format(x), | |
# convert from base e to base 2 | |
hypo["positional_scores"].div_(math.log(2)).tolist(), | |
) | |
), | |
) | |
) | |
if cfg.generation.print_alignment: | |
alignment_str = " ".join( | |
["{}-{}".format(src, tgt) for src, tgt in alignment] | |
) | |
print("A-{}\t{}".format(id_, alignment_str)) | |
# update running id_ counter | |
start_id += len(inputs) | |
logger.info( | |
"Total time: {:.3f} seconds; translation time: {:.3f}".format( | |
time.time() - start_time, total_translate_time | |
) | |
) | |
# changed from fairseq.utils.py | |
def post_process_prediction( | |
hypo_tokens, | |
src_str, | |
alignment, | |
align_dict, | |
tgt_dict, | |
remove_bpe=None, | |
extra_symbols_to_ignore=None, | |
): | |
hypo_str = tgt_dict.string( | |
hypo_tokens, remove_bpe, extra_symbols_to_ignore=extra_symbols_to_ignore | |
) | |
if align_dict is not None: | |
hypo_str = utils.replace_unk( | |
hypo_str, src_str, alignment, align_dict, tgt_dict.unk_string() | |
) | |
if align_dict is not None or remove_bpe is not None: | |
# Convert back to tokens for evaluating with unk replacement or without BPE | |
# Note that the dictionary can be modified inside the method. | |
hypo_tokens = tgt_dict.encode_line(hypo_str, add_if_not_exist=False) | |
return hypo_tokens, hypo_str, alignment | |
def cli_main(): | |
parser = options.get_interactive_generation_parser() | |
args = options.parse_args_and_arch(parser) | |
distributed_utils.call_main(convert_namespace_to_omegaconf(args), main) | |
if __name__ == "__main__": | |
cli_main() | |