Tzktz's picture
Upload 7664 files
6fc683c verified
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Translate raw text with a trained model. Batches data on-the-fly.
"""
import sys
sys.path.append( '.' )
import unilm
import ast
import fileinput
import logging
import math
import os
import sys
import time
import re
from argparse import Namespace
from collections import namedtuple
import numpy as np
import torch
from fairseq import checkpoint_utils, distributed_utils, options, tasks, utils
from fairseq.dataclass.configs import FairseqConfig
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.token_generation_constraints import pack_constraints, unpack_constraints
from fairseq_cli.generate import get_symbols_to_strip_from_output
import sentencepiece as spm
from torchvision import transforms
from PIL import Image
# This is simple maximum entropy normalization performed in Inception paper
inception_normalize = transforms.Compose(
[transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])]
)
def square_transform(size=224):
return transforms.Compose(
[
transforms.Resize((size, size), interpolation=transforms.InterpolationMode.BICUBIC),
transforms.ToTensor(),
inception_normalize,
]
)
def split_string(string, separators):
"""
Function to split a given string based on a list of separators.
Args:
string (str): The input string to be split.
separators (list): A list of separators to be used for splitting the string.
Returns:
A list containing the split string with separators included.
"""
pattern = "|".join(re.escape(separator) for separator in separators)
result = re.split(f'({pattern})', string)
return [elem for elem in result if elem]
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
logger = logging.getLogger("fairseq_cli.interactive")
Batch = namedtuple("Batch", "ids src_tokens src_lengths constraints img_src_tokens img_gpt_input_mask")
Translation = namedtuple("Translation", "src_str hypos pos_scores alignments")
def buffered_read(input, buffer_size):
buffer = []
with fileinput.input(files=[input], openhook=fileinput.hook_encoded("utf-8")) as h:
for src_str in h:
buffer.append(src_str.strip())
if len(buffer) >= buffer_size:
yield buffer
buffer = []
if len(buffer) > 0:
yield buffer
def get_interactive_tokens_and_lengths(self, lines, encode_fn, tokenizer=None):
"""
line format: [image]path<tab>text<tab>[image]path
model input: `<s> <image> image hidden </image> My cat looking very dignified.</s>`
"""
image_feature_length = self.args.image_feature_length
bos_id = self.dictionary.bos()
eos_id = self.dictionary.eos()
boi_id = self.dictionary.index("<image>")
eoi_id = self.dictionary.index("</image>")
def convert_one_line(input_str):
# TODO: input interleave image and text
token = []
img_src_token = []
img_gpt_input_mask = []
segments = input_str.split('<tab>')
token.append(bos_id)
img_gpt_input_mask.append(0)
for i, segment in enumerate(segments):
if segment.startswith('[image]'):
image_path = segment[7:]
# read image and transform to tensor
image = Image.open(image_path).convert("RGB")
image_tensor = square_transform(self.args.input_resolution)(image)
img_src_token.append(image_tensor)
# token.extend([boi_id] + [boi_id] * image_feature_length + [eoi_id])
token.extend([boi_id] + list(range(4, image_feature_length+4)) + [eoi_id])
img_gpt_input_mask.extend([0] + [1] * image_feature_length + [0])
else:
special_tokens = [self.source_dictionary[idx] for idx in range(tokenizer.vocab_size(),
len(self.source_dictionary))]
split_special_token_words = []
split_resutls = split_string(segment, special_tokens)
for string in split_resutls:
if string in special_tokens:
split_special_token_words.append(string)
else:
encode_tokens = tokenizer.encode(string, out_type=str)
split_special_token_words.extend(encode_tokens)
segment = ' '.join(split_special_token_words)
text_tokens = self.source_dictionary.encode_line(
encode_fn(segment), add_if_not_exist=False
).tolist()
text_tokens = text_tokens[:-1] # </s> in token
token.extend(text_tokens)
img_gpt_input_mask.extend([0] * (len(text_tokens))) # </s> in token
token.append(eos_id)
# img_gpt_input_mask = img_gpt_input_mask[:-1]
assert len(token) == len(img_gpt_input_mask) + 1
token = torch.LongTensor(token)
img_gpt_input_mask = torch.LongTensor(img_gpt_input_mask)
img_src_token = torch.stack(img_src_token, dim=0)
return token, img_src_token, img_gpt_input_mask
tokens = []
img_src_tokens = []
img_gpt_input_masks = []
for src_str in lines:
token, img_src_token, img_gpt_input_mask = convert_one_line(src_str)
tokens.append(token)
img_src_tokens.append(img_src_token)
img_gpt_input_masks.append(img_gpt_input_mask)
lengths = [t.numel() for t in tokens]
return tokens, lengths, img_src_tokens, img_gpt_input_masks
def make_batches(lines, cfg, task, max_positions, encode_fn):
def encode_fn_target(x):
return encode_fn(x)
if cfg.generation.constraints:
# Strip (tab-delimited) contraints, if present, from input lines,
# store them in batch_constraints
batch_constraints = [list() for _ in lines]
for i, line in enumerate(lines):
if "\t" in line:
lines[i], *batch_constraints[i] = line.split("\t")
# Convert each List[str] to List[Tensor]
for i, constraint_list in enumerate(batch_constraints):
batch_constraints[i] = [
task.target_dictionary.encode_line(
encode_fn_target(constraint),
append_eos=False,
add_if_not_exist=False,
)
for constraint in constraint_list
]
if cfg.generation.constraints:
constraints_tensor = pack_constraints(batch_constraints)
else:
constraints_tensor = None
tokenizer = spm.SentencePieceProcessor()
if os.path.exists('data/sentencepiece.bpe.model'):
tokenizer.Load('data/sentencepiece.bpe.model')
else:
tokenizer = None
tokens, lengths, img_src_tokens, img_gpt_input_mask = get_interactive_tokens_and_lengths(task, lines, encode_fn, tokenizer)
itr = task.get_batch_iterator(
dataset=task.build_dataset_for_caption_inference(
tokens, lengths, img_src_tokens, img_gpt_input_mask, constraints=constraints_tensor
),
max_tokens=cfg.dataset.max_tokens,
max_sentences=cfg.dataset.batch_size,
max_positions=max_positions,
ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test,
).next_epoch_itr(shuffle=False)
for batch in itr:
ids = batch["id"]
src_tokens = batch["net_input"]["src_tokens"]
src_lengths = batch["net_input"]["src_lengths"]
img_src_tokens = batch["net_input"]["img_src_tokens"]
img_gpt_input_mask = batch["net_input"]["img_gpt_input_mask"]
constraints = batch.get("constraints", None)
yield Batch(
ids=ids,
src_tokens=src_tokens,
src_lengths=src_lengths,
img_src_tokens=img_src_tokens,
img_gpt_input_mask=img_gpt_input_mask,
constraints=constraints,
)
def main(cfg: FairseqConfig):
if isinstance(cfg, Namespace):
cfg = convert_namespace_to_omegaconf(cfg)
start_time = time.time()
total_translate_time = 0
utils.import_user_module(cfg.common)
if cfg.interactive.buffer_size < 1:
cfg.interactive.buffer_size = 1
if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None:
cfg.dataset.batch_size = 1
assert (
not cfg.generation.sampling or cfg.generation.nbest == cfg.generation.beam
), "--sampling requires --nbest to be equal to --beam"
assert (
not cfg.dataset.batch_size
or cfg.dataset.batch_size <= cfg.interactive.buffer_size
), "--batch-size cannot be larger than --buffer-size"
logger.info(cfg)
# Fix seed for stochastic decoding
if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
np.random.seed(cfg.common.seed)
utils.set_torch_seed(cfg.common.seed)
use_cuda = torch.cuda.is_available() and not cfg.common.cpu
# Setup task, e.g., translation
logger.info("Task: {}".format(cfg.task))
task = tasks.setup_task(cfg.task)
# Load ensemble
overrides = ast.literal_eval(cfg.common_eval.model_overrides)
logger.info("loading model(s) from {}".format(cfg.common_eval.path))
models, _model_args = checkpoint_utils.load_model_ensemble(
utils.split_paths(cfg.common_eval.path),
arg_overrides=overrides,
task=task,
suffix=cfg.checkpoint.checkpoint_suffix,
strict=(cfg.checkpoint.checkpoint_shard_count == 1),
num_shards=cfg.checkpoint.checkpoint_shard_count,
)
# Set dictionaries
src_dict = task.source_dictionary
tgt_dict = task.target_dictionary
# Optimize ensemble for generation
for model in models:
if model is None:
continue
if cfg.common.fp16:
model.half()
if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
model.cuda()
model.prepare_for_inference_(cfg)
# Initialize generator
generator = task.build_generator(models, cfg.generation)
# Handle tokenization and BPE
tokenizer = task.build_tokenizer(cfg.tokenizer)
bpe = task.build_bpe(cfg.bpe)
def encode_fn(x):
if tokenizer is not None:
x = tokenizer.encode(x)
if bpe is not None:
x = bpe.encode(x)
return x
def decode_fn(x):
if bpe is not None:
x = bpe.decode(x)
if tokenizer is not None:
x = tokenizer.decode(x)
return x
# Load alignment dictionary for unknown word replacement
# (None if no unknown word replacement, empty if no path to align dictionary)
align_dict = utils.load_align_dict(cfg.generation.replace_unk)
max_positions = utils.resolve_max_positions(
task.max_positions(), *[model.max_positions() for model in models]
)
if cfg.generation.constraints:
logger.warning(
"NOTE: Constrained decoding currently assumes a shared subword vocabulary."
)
if cfg.interactive.buffer_size > 1:
logger.info("Sentence buffer size: %s", cfg.interactive.buffer_size)
logger.info("NOTE: hypothesis and token scores are output in base 2")
logger.info("Type the input sentence and press return:")
start_id = 0
for inputs in buffered_read(cfg.interactive.input, cfg.interactive.buffer_size):
print("inputs", inputs)
results = []
for batch in make_batches(inputs, cfg, task, max_positions, encode_fn):
bsz = batch.src_tokens.size(0)
src_tokens = batch.src_tokens
src_lengths = batch.src_lengths
if generator.max_len_b > 2000: # use too long max_len_b to implement dynamic max_len_b
generator.max_len_b = src_lengths.max().item() + generator.max_len_b - 2000
img_src_tokens = batch.img_src_tokens
img_gpt_input_mask = batch.img_gpt_input_mask
constraints = batch.constraints
if use_cuda:
src_tokens = src_tokens.cuda()
src_lengths = src_lengths.cuda()
if constraints is not None:
constraints = constraints.cuda()
sample = {
"net_input": {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
"img_src_tokens": img_src_tokens,
"img_gpt_input_mask": img_gpt_input_mask,
},
}
translate_start_time = time.time()
translations = task.inference_step(
generator, models, sample, constraints=constraints
)
translate_time = time.time() - translate_start_time
total_translate_time += translate_time
list_constraints = [[] for _ in range(bsz)]
if cfg.generation.constraints:
list_constraints = [unpack_constraints(c) for c in constraints]
for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)):
src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad())
constraints = list_constraints[i]
results.append(
(
start_id + id,
src_tokens_i,
hypos,
{
"constraints": constraints,
"time": translate_time / len(translations),
},
)
)
# sort output to match input order
for id_, src_tokens, hypos, info in sorted(results, key=lambda x: x[0]):
src_str = ""
if src_dict is not None:
# print(src_tokens)
src_str = src_dict.string(src_tokens, cfg.common_eval.post_process)
print("S-{}\t{}".format(id_, src_str))
print("ST-{}\t{}".format(id_, src_tokens.int().cpu().tolist()))
print("W-{}\t{:.3f}\tseconds".format(id_, info["time"]))
for constraint in info["constraints"]:
print(
"C-{}\t{}".format(
id_,
tgt_dict.string(constraint, cfg.common_eval.post_process),
)
)
# Process top predictions
for hypo in hypos[: min(len(hypos), cfg.generation.nbest)]:
# hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
hypo_tokens, hypo_str, alignment = post_process_prediction(
hypo_tokens=hypo["tokens"].int().cpu(),
src_str=src_str,
alignment=hypo["alignment"],
align_dict=align_dict,
tgt_dict=tgt_dict,
remove_bpe=cfg.common_eval.post_process,
extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator),
)
detok_hypo_str = decode_fn(hypo_str)
score = hypo["score"] / math.log(2) # convert to base 2
# original hypothesis (after tokenization and BPE)
print("HT-{}\t{}\t{}".format(id_, score, hypo["tokens"].int().cpu().tolist()))
print("H-{}\t{}\t{}".format(id_, score, hypo_str))
# detokenized hypothesis
print("D-{}\t{}\t{}".format(id_, score, detok_hypo_str))
print(
"P-{}\t{}".format(
id_,
" ".join(
map(
lambda x: "{:.4f}".format(x),
# convert from base e to base 2
hypo["positional_scores"].div_(math.log(2)).tolist(),
)
),
)
)
if cfg.generation.print_alignment:
alignment_str = " ".join(
["{}-{}".format(src, tgt) for src, tgt in alignment]
)
print("A-{}\t{}".format(id_, alignment_str))
# update running id_ counter
start_id += len(inputs)
logger.info(
"Total time: {:.3f} seconds; translation time: {:.3f}".format(
time.time() - start_time, total_translate_time
)
)
# changed from fairseq.utils.py
def post_process_prediction(
hypo_tokens,
src_str,
alignment,
align_dict,
tgt_dict,
remove_bpe=None,
extra_symbols_to_ignore=None,
):
hypo_str = tgt_dict.string(
hypo_tokens, remove_bpe, extra_symbols_to_ignore=extra_symbols_to_ignore
)
if align_dict is not None:
hypo_str = utils.replace_unk(
hypo_str, src_str, alignment, align_dict, tgt_dict.unk_string()
)
if align_dict is not None or remove_bpe is not None:
# Convert back to tokens for evaluating with unk replacement or without BPE
# Note that the dictionary can be modified inside the method.
hypo_tokens = tgt_dict.encode_line(hypo_str, add_if_not_exist=False)
return hypo_tokens, hypo_str, alignment
def cli_main():
parser = options.get_interactive_generation_parser()
args = options.parse_args_and_arch(parser)
distributed_utils.call_main(convert_namespace_to_omegaconf(args), main)
if __name__ == "__main__":
cli_main()