Spaces:
Runtime error
Runtime error
Dit-document-layout-analysis
/
unilm
/edgelm
/fairseq
/optim
/lr_scheduler
/triangular_lr_scheduler.py
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import math | |
| from dataclasses import dataclass, field | |
| from typing import List | |
| from omegaconf import II | |
| from fairseq.dataclass import FairseqDataclass | |
| from fairseq.optim.lr_scheduler import FairseqLRScheduler, register_lr_scheduler | |
| class TriangularLRScheduleConfig(FairseqDataclass): | |
| max_lr: float = field( | |
| default="???", metadata={"help": "max learning rate, must be more than cfg.lr"} | |
| ) | |
| lr_period_updates: float = field( | |
| default=5000, | |
| metadata={"help": "initial number of updates per period (cycle length)"}, | |
| ) | |
| lr_shrink: float = field( | |
| default=0.1, metadata={"help": "shrink factor for annealing"} | |
| ) | |
| shrink_min: bool = field( | |
| default=False, metadata={"help": "if set, also shrinks min lr"} | |
| ) | |
| lr: List[float] = II("optimization.lr") | |
| class TriangularLRSchedule(FairseqLRScheduler): | |
| """Assign LR based on a triangular cyclical schedule. | |
| See https://arxiv.org/pdf/1506.01186.pdf for details. | |
| """ | |
| def __init__(self, cfg: TriangularLRScheduleConfig, optimizer): | |
| super().__init__(cfg, optimizer) | |
| if len(cfg.lr) > 1: | |
| raise ValueError( | |
| "Cannot use a fixed learning rate schedule with triangular." | |
| " Consider --lr-scheduler=fixed instead." | |
| ) | |
| lr = cfg.lr[0] | |
| assert cfg.max_lr > lr, "max_lr must be more than lr" | |
| self.min_lr = lr | |
| self.max_lr = cfg.max_lr | |
| self.stepsize = cfg.lr_period_updates // 2 | |
| self.lr_shrink = cfg.lr_shrink | |
| self.shrink_min = cfg.shrink_min | |
| # initial learning rate | |
| self.lr = self.min_lr | |
| self.optimizer.set_lr(self.lr) | |
| def step(self, epoch, val_loss=None): | |
| """Update the learning rate at the end of the given epoch.""" | |
| super().step(epoch, val_loss) | |
| # we don't change the learning rate at epoch boundaries | |
| return self.optimizer.get_lr() | |
| def step_update(self, num_updates): | |
| """Update the learning rate after each update.""" | |
| cycle = math.floor(num_updates / (2 * self.stepsize)) | |
| lr_shrink = self.lr_shrink ** cycle | |
| max_lr = self.max_lr * lr_shrink | |
| if self.shrink_min: | |
| min_lr = self.min_lr * lr_shrink | |
| else: | |
| min_lr = self.min_lr | |
| x = abs(num_updates / self.stepsize - 2 * (cycle + 1) + 1) | |
| self.lr = min_lr + (max_lr - min_lr) * max(0, (1 - x)) | |
| self.optimizer.set_lr(self.lr) | |
| return self.lr | |