Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import logging | |
| from dataclasses import dataclass, field | |
| from typing import Optional | |
| import torch | |
| from .dummy_dataset import DummyDataset | |
| from fairseq.data import Dictionary | |
| from fairseq.dataclass import FairseqDataclass | |
| from fairseq.tasks import FairseqTask, register_task | |
| from omegaconf import II | |
| logger = logging.getLogger(__name__) | |
| class DummyLMConfig(FairseqDataclass): | |
| dict_size: int = 49996 | |
| dataset_size: int = 100000 | |
| tokens_per_sample: int = field( | |
| default=512, metadata={"help": "max sequence length"} | |
| ) | |
| add_bos_token: bool = False | |
| batch_size: Optional[int] = II("dataset.batch_size") | |
| max_tokens: Optional[int] = II("dataset.max_tokens") | |
| max_target_positions: int = II("task.tokens_per_sample") | |
| class DummyLMTask(FairseqTask): | |
| def __init__(self, cfg: DummyLMConfig): | |
| super().__init__(cfg) | |
| # load dictionary | |
| self.dictionary = Dictionary() | |
| for i in range(cfg.dict_size): | |
| self.dictionary.add_symbol("word{}".format(i)) | |
| self.dictionary.pad_to_multiple_(8) # often faster if divisible by 8 | |
| logger.info("dictionary: {} types".format(len(self.dictionary))) | |
| seq = torch.arange(cfg.tokens_per_sample + 1) + self.dictionary.pad() + 1 | |
| self.dummy_src = seq[:-1] | |
| self.dummy_tgt = seq[1:] | |
| def load_dataset(self, split, epoch=1, combine=False, **kwargs): | |
| """Load a given dataset split. | |
| Args: | |
| split (str): name of the split (e.g., train, valid, test) | |
| """ | |
| if self.cfg.batch_size is not None: | |
| bsz = self.cfg.batch_size | |
| else: | |
| bsz = max(1, self.cfg.max_tokens // self.cfg.tokens_per_sample) | |
| self.datasets[split] = DummyDataset( | |
| { | |
| "id": 1, | |
| "net_input": { | |
| "src_tokens": torch.stack([self.dummy_src for _ in range(bsz)]), | |
| "src_lengths": torch.full( | |
| (bsz,), self.cfg.tokens_per_sample, dtype=torch.long | |
| ), | |
| }, | |
| "target": torch.stack([self.dummy_tgt for _ in range(bsz)]), | |
| "nsentences": bsz, | |
| "ntokens": bsz * self.cfg.tokens_per_sample, | |
| }, | |
| num_items=self.cfg.dataset_size, | |
| item_size=self.cfg.tokens_per_sample, | |
| ) | |
| def source_dictionary(self): | |
| return self.dictionary | |
| def target_dictionary(self): | |
| return self.dictionary | |