Spaces:
Sleeping
Sleeping
# -------------------------------------------------------- | |
# BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) | |
# Github source: https://github.com/microsoft/unilm/tree/master/beit | |
# Copyright (c) 2021 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# By Hangbo Bao | |
# Based on timm code bases | |
# https://github.com/rwightman/pytorch-image-models/tree/master/timm | |
# --------------------------------------------------------' | |
import math | |
import random | |
import warnings | |
import torchvision.transforms.functional as F | |
from timm.data.transforms import interp_mode_to_str, _RANDOM_INTERPOLATION, str_to_interp_mode | |
class RandomResizedCropAndInterpolationWithTwoPic: | |
"""Crop the given PIL Image to random size and aspect ratio with random interpolation. | |
A crop of random size (default: of 0.08 to 1.0) of the original size and a random | |
aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop | |
is finally resized to given size. | |
This is popularly used to train the Inception networks. | |
Args: | |
size: expected output size of each edge | |
scale: range of size of the origin size cropped | |
ratio: range of aspect ratio of the origin aspect ratio cropped | |
interpolation: Default: PIL.Image.BILINEAR | |
""" | |
def __init__(self, size, second_size=None, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), | |
interpolation='bilinear', second_interpolation='lanczos'): | |
if isinstance(size, tuple): | |
self.size = size | |
else: | |
self.size = (size, size) | |
if second_size is not None: | |
if isinstance(second_size, tuple): | |
self.second_size = second_size | |
else: | |
self.second_size = (second_size, second_size) | |
else: | |
self.second_size = None | |
if (scale[0] > scale[1]) or (ratio[0] > ratio[1]): | |
warnings.warn("range should be of kind (min, max)") | |
if interpolation == 'random': | |
self.interpolation = _RANDOM_INTERPOLATION | |
else: | |
self.interpolation = str_to_interp_mode(interpolation) | |
self.second_interpolation = str_to_interp_mode(second_interpolation) | |
self.scale = scale | |
self.ratio = ratio | |
def get_params(img, scale, ratio): | |
"""Get parameters for ``crop`` for a random sized crop. | |
Args: | |
img (PIL Image): Image to be cropped. | |
scale (tuple): range of size of the origin size cropped | |
ratio (tuple): range of aspect ratio of the origin aspect ratio cropped | |
Returns: | |
tuple: params (i, j, h, w) to be passed to ``crop`` for a random | |
sized crop. | |
""" | |
area = img.size[0] * img.size[1] | |
for attempt in range(10): | |
target_area = random.uniform(*scale) * area | |
log_ratio = (math.log(ratio[0]), math.log(ratio[1])) | |
aspect_ratio = math.exp(random.uniform(*log_ratio)) | |
w = int(round(math.sqrt(target_area * aspect_ratio))) | |
h = int(round(math.sqrt(target_area / aspect_ratio))) | |
if w <= img.size[0] and h <= img.size[1]: | |
i = random.randint(0, img.size[1] - h) | |
j = random.randint(0, img.size[0] - w) | |
return i, j, h, w | |
# Fallback to central crop | |
in_ratio = img.size[0] / img.size[1] | |
if in_ratio < min(ratio): | |
w = img.size[0] | |
h = int(round(w / min(ratio))) | |
elif in_ratio > max(ratio): | |
h = img.size[1] | |
w = int(round(h * max(ratio))) | |
else: # whole image | |
w = img.size[0] | |
h = img.size[1] | |
i = (img.size[1] - h) // 2 | |
j = (img.size[0] - w) // 2 | |
return i, j, h, w | |
def __call__(self, img): | |
""" | |
Args: | |
img (PIL Image): Image to be cropped and resized. | |
Returns: | |
PIL Image: Randomly cropped and resized image. | |
""" | |
i, j, h, w = self.get_params(img, self.scale, self.ratio) | |
if isinstance(self.interpolation, (tuple, list)): | |
interpolation = random.choice(self.interpolation) | |
else: | |
interpolation = self.interpolation | |
if self.second_size is None: | |
return F.resized_crop(img, i, j, h, w, self.size, interpolation) | |
else: | |
return F.resized_crop(img, i, j, h, w, self.size, interpolation), \ | |
F.resized_crop(img, i, j, h, w, self.second_size, self.second_interpolation) | |
def __repr__(self): | |
if isinstance(self.interpolation, (tuple, list)): | |
interpolate_str = ' '.join([interp_mode_to_str(x) for x in self.interpolation]) | |
else: | |
interpolate_str = interp_mode_to_str(self.interpolation) | |
format_string = self.__class__.__name__ + '(size={0}'.format(self.size) | |
format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale)) | |
format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio)) | |
format_string += ', interpolation={0}'.format(interpolate_str) | |
if self.second_size is not None: | |
format_string += ', second_size={0}'.format(self.second_size) | |
format_string += ', second_interpolation={0}'.format(interp_mode_to_str(self.second_interpolation)) | |
format_string += ')' | |
return format_string |