Spaces:
Sleeping
Sleeping
# -------------------------------------------------------- | |
# BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) | |
# Github source: https://github.com/microsoft/unilm/tree/master/beit | |
# Copyright (c) 2021 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# By Hangbo Bao | |
# Based on timm, DINO and DeiT code bases | |
# https://github.com/rwightman/pytorch-image-models/tree/master/timm | |
# https://github.com/facebookresearch/deit/ | |
# https://github.com/facebookresearch/dino | |
# --------------------------------------------------------' | |
import math | |
import sys | |
from typing import Iterable, Optional | |
import torch | |
from timm.data import Mixup | |
from timm.utils import accuracy, ModelEma | |
import utils | |
def train_class_batch(model, samples, target, criterion): | |
outputs = model(samples) | |
if not isinstance(outputs, torch.Tensor): | |
# assume that the model outputs a tuple of [outputs, outputs_kd] | |
outputs, outputs_kd = outputs | |
loss = criterion(outputs, target) | |
return loss, outputs | |
def get_loss_scale_for_deepspeed(model): | |
optimizer = model.optimizer | |
return optimizer.loss_scale if hasattr(optimizer, "loss_scale") else optimizer.cur_scale | |
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, | |
data_loader: Iterable, optimizer: torch.optim.Optimizer, | |
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0, | |
model_ema: Optional[ModelEma] = None, mixup_fn: Optional[Mixup] = None, log_writer=None, | |
start_steps=None, lr_schedule_values=None, wd_schedule_values=None, | |
num_training_steps_per_epoch=None, update_freq=None): | |
model.train(True) | |
metric_logger = utils.MetricLogger(delimiter=" ") | |
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) | |
metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) | |
header = 'Epoch: [{}]'.format(epoch) | |
print_freq = 10 | |
if loss_scaler is None: | |
model.zero_grad() | |
model.micro_steps = 0 | |
else: | |
optimizer.zero_grad() | |
for data_iter_step, (samples, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)): | |
step = data_iter_step // update_freq | |
if step >= num_training_steps_per_epoch: | |
continue | |
it = start_steps + step # global training iteration | |
# Update LR & WD for the first acc | |
if lr_schedule_values is not None or wd_schedule_values is not None and data_iter_step % update_freq == 0: | |
for i, param_group in enumerate(optimizer.param_groups): | |
if lr_schedule_values is not None: | |
param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"] | |
if wd_schedule_values is not None and param_group["weight_decay"] > 0: | |
param_group["weight_decay"] = wd_schedule_values[it] | |
samples = samples.to(device, non_blocking=True) | |
targets = targets.to(device, non_blocking=True) | |
if mixup_fn is not None: | |
samples, targets = mixup_fn(samples, targets) | |
if loss_scaler is None: | |
samples = samples.half() | |
loss, output = train_class_batch( | |
model, samples, targets, criterion) | |
else: | |
with torch.cuda.amp.autocast(): | |
loss, output = train_class_batch( | |
model, samples, targets, criterion) | |
loss_value = loss.item() | |
if not math.isfinite(loss_value): | |
print("Loss is {}, stopping training".format(loss_value)) | |
sys.exit(1) | |
if loss_scaler is None: | |
loss /= update_freq | |
model.backward(loss) | |
model.step() | |
if (data_iter_step + 1) % update_freq == 0: | |
# model.zero_grad() | |
# Deepspeed will call step() & model.zero_grad() automatic | |
if model_ema is not None: | |
model_ema.update(model) | |
grad_norm = None | |
loss_scale_value = get_loss_scale_for_deepspeed(model) | |
else: | |
# this attribute is added by timm on one optimizer (adahessian) | |
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order | |
loss /= update_freq | |
grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm, | |
parameters=model.parameters(), create_graph=is_second_order, | |
update_grad=(data_iter_step + 1) % update_freq == 0) | |
if (data_iter_step + 1) % update_freq == 0: | |
optimizer.zero_grad() | |
if model_ema is not None: | |
model_ema.update(model) | |
loss_scale_value = loss_scaler.state_dict()["scale"] | |
torch.cuda.synchronize() | |
if mixup_fn is None: | |
class_acc = (output.max(-1)[-1] == targets).float().mean() | |
else: | |
class_acc = None | |
metric_logger.update(loss=loss_value) | |
metric_logger.update(class_acc=class_acc) | |
metric_logger.update(loss_scale=loss_scale_value) | |
min_lr = 10. | |
max_lr = 0. | |
for group in optimizer.param_groups: | |
min_lr = min(min_lr, group["lr"]) | |
max_lr = max(max_lr, group["lr"]) | |
metric_logger.update(lr=max_lr) | |
metric_logger.update(min_lr=min_lr) | |
weight_decay_value = None | |
for group in optimizer.param_groups: | |
if group["weight_decay"] > 0: | |
weight_decay_value = group["weight_decay"] | |
metric_logger.update(weight_decay=weight_decay_value) | |
metric_logger.update(grad_norm=grad_norm) | |
if log_writer is not None: | |
log_writer.update(loss=loss_value, head="loss") | |
log_writer.update(class_acc=class_acc, head="loss") | |
log_writer.update(loss_scale=loss_scale_value, head="opt") | |
log_writer.update(lr=max_lr, head="opt") | |
log_writer.update(min_lr=min_lr, head="opt") | |
log_writer.update(weight_decay=weight_decay_value, head="opt") | |
log_writer.update(grad_norm=grad_norm, head="opt") | |
log_writer.set_step() | |
# gather the stats from all processes | |
metric_logger.synchronize_between_processes() | |
print("Averaged stats:", metric_logger) | |
return {k: meter.global_avg for k, meter in metric_logger.meters.items()} | |
def evaluate(data_loader, model, device): | |
criterion = torch.nn.CrossEntropyLoss() | |
metric_logger = utils.MetricLogger(delimiter=" ") | |
header = 'Test:' | |
# switch to evaluation mode | |
model.eval() | |
for batch in metric_logger.log_every(data_loader, 10, header): | |
images = batch[0] | |
target = batch[-1] | |
images = images.to(device, non_blocking=True) | |
target = target.to(device, non_blocking=True) | |
# compute output | |
with torch.cuda.amp.autocast(): | |
output = model(images) | |
loss = criterion(output, target) | |
acc1, acc5 = accuracy(output, target, topk=(1, 5)) | |
batch_size = images.shape[0] | |
metric_logger.update(loss=loss.item()) | |
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size) | |
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size) | |
# gather the stats from all processes | |
metric_logger.synchronize_between_processes() | |
print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}' | |
.format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss)) | |
return {k: meter.global_avg for k, meter in metric_logger.meters.items()} | |