Spaces:
Sleeping
Sleeping
# -------------------------------------------------------- | |
# BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) | |
# Github source: https://github.com/microsoft/unilm/tree/master/beit | |
# Copyright (c) 2021 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# By Hangbo Bao | |
# Based on timm, DINO and DeiT code bases | |
# https://github.com/rwightman/pytorch-image-models/tree/master/timm | |
# https://github.com/facebookresearch/deit/ | |
# https://github.com/facebookresearch/dino | |
# --------------------------------------------------------' | |
from timm.data import create_transform | |
from timm.data.constants import \ | |
IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD | |
from timm.data.transforms import str_to_interp_mode | |
from torchvision import transforms | |
from dataset_folder import RvlcdipImageFolder | |
def build_dataset(is_train, args): | |
transform = build_transform(is_train, args) | |
print("Transform = ") | |
if isinstance(transform, tuple): | |
for trans in transform: | |
print(" - - - - - - - - - - ") | |
for t in trans.transforms: | |
print(t) | |
else: | |
for t in transform.transforms: | |
print(t) | |
print("---------------------------") | |
if args.data_set == 'rvlcdip': | |
root = args.data_path if is_train else args.eval_data_path | |
split = "train" if is_train else "test" | |
dataset = RvlcdipImageFolder(root, split=split, transform=transform) | |
nb_classes = args.nb_classes | |
assert len(dataset.class_to_idx) == nb_classes | |
else: | |
raise NotImplementedError() | |
assert nb_classes == args.nb_classes | |
print("Number of the class = %d" % args.nb_classes) | |
return dataset, nb_classes | |
def build_transform(is_train, args): | |
resize_im = args.input_size > 32 | |
imagenet_default_mean_and_std = args.imagenet_default_mean_and_std | |
mean = IMAGENET_INCEPTION_MEAN if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_MEAN | |
std = IMAGENET_INCEPTION_STD if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_STD | |
if is_train: | |
# this should always dispatch to transforms_imagenet_train | |
transform = create_transform( | |
input_size=args.input_size, | |
is_training=True, | |
color_jitter=args.color_jitter, | |
auto_augment=args.aa, | |
interpolation=args.train_interpolation, | |
re_prob=args.reprob, | |
re_mode=args.remode, | |
re_count=args.recount, | |
mean=mean, | |
std=std, | |
) | |
if not resize_im: | |
# replace RandomResizedCropAndInterpolation with | |
# RandomCrop | |
transform.transforms[0] = transforms.RandomCrop( | |
args.input_size, padding=4) | |
return transform | |
t = [] | |
if resize_im: | |
if args.crop_pct is None: | |
if args.input_size < 384: | |
args.crop_pct = 224 / 256 | |
else: | |
args.crop_pct = 1.0 | |
size = int(args.input_size / args.crop_pct) | |
t.append( | |
transforms.Resize(size, interpolation=str_to_interp_mode("bicubic")), | |
# to maintain same ratio w.r.t. 224 images | |
) | |
t.append(transforms.CenterCrop(args.input_size)) | |
t.append(transforms.ToTensor()) | |
t.append(transforms.Normalize(mean, std)) | |
return transforms.Compose(t) | |