Spaces:
Sleeping
Sleeping
# -------------------------------------------------------- | |
# BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) | |
# Github source: https://github.com/microsoft/unilm/tree/master/beit | |
# Copyright (c) 2021 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# By Hangbo Bao | |
# Modified on torchvision code bases | |
# https://github.com/pytorch/vision | |
# --------------------------------------------------------' | |
import os | |
import os.path | |
import random | |
from typing import Any, Callable, cast, Dict, List, Optional, Tuple | |
from PIL import Image | |
from torchvision.datasets.vision import VisionDataset | |
def has_file_allowed_extension(filename: str, extensions: Tuple[str, ...]) -> bool: | |
"""Checks if a file is an allowed extension. | |
Args: | |
filename (string): path to a file | |
extensions (tuple of strings): extensions to consider (lowercase) | |
Returns: | |
bool: True if the filename ends with one of given extensions | |
""" | |
return filename.lower().endswith(extensions) | |
def is_image_file(filename: str) -> bool: | |
"""Checks if a file is an allowed image extension. | |
Args: | |
filename (string): path to a file | |
Returns: | |
bool: True if the filename ends with a known image extension | |
""" | |
return has_file_allowed_extension(filename, IMG_EXTENSIONS) | |
def make_dataset( | |
directory: str, | |
class_to_idx: Dict[str, int], | |
extensions: Optional[Tuple[str, ...]] = None, | |
is_valid_file: Optional[Callable[[str], bool]] = None, | |
) -> List[Tuple[str, int]]: | |
instances = [] | |
directory = os.path.expanduser(directory) | |
both_none = extensions is None and is_valid_file is None | |
both_something = extensions is not None and is_valid_file is not None | |
if both_none or both_something: | |
raise ValueError("Both extensions and is_valid_file cannot be None or not None at the same time") | |
if extensions is not None: | |
def is_valid_file(x: str) -> bool: | |
return has_file_allowed_extension(x, cast(Tuple[str, ...], extensions)) | |
is_valid_file = cast(Callable[[str], bool], is_valid_file) | |
for target_class in sorted(class_to_idx.keys()): | |
class_index = class_to_idx[target_class] | |
target_dir = os.path.join(directory, target_class) | |
if not os.path.isdir(target_dir): | |
continue | |
for root, _, fnames in sorted(os.walk(target_dir, followlinks=True)): | |
for fname in sorted(fnames): | |
path = os.path.join(root, fname) | |
if is_valid_file(path): | |
item = path, class_index | |
instances.append(item) | |
return instances | |
class DatasetFolder(VisionDataset): | |
"""A generic data loader where the samples are arranged in this way: :: | |
root/class_x/xxx.ext | |
root/class_x/xxy.ext | |
root/class_x/xxz.ext | |
root/class_y/123.ext | |
root/class_y/nsdf3.ext | |
root/class_y/asd932_.ext | |
Args: | |
root (string): Root directory path. | |
loader (callable): A function to load a sample given its path. | |
extensions (tuple[string]): A list of allowed extensions. | |
both extensions and is_valid_file should not be passed. | |
transform (callable, optional): A function/transform that takes in | |
a sample and returns a transformed version. | |
E.g, ``transforms.RandomCrop`` for images. | |
target_transform (callable, optional): A function/transform that takes | |
in the target and transforms it. | |
is_valid_file (callable, optional): A function that takes path of a file | |
and check if the file is a valid file (used to check of corrupt files) | |
both extensions and is_valid_file should not be passed. | |
Attributes: | |
classes (list): List of the class names sorted alphabetically. | |
class_to_idx (dict): Dict with items (class_name, class_index). | |
samples (list): List of (sample path, class_index) tuples | |
targets (list): The class_index value for each image in the dataset | |
""" | |
def __init__( | |
self, | |
root: str, | |
loader: Callable[[str], Any], | |
extensions: Optional[Tuple[str, ...]] = None, | |
transform: Optional[Callable] = None, | |
target_transform: Optional[Callable] = None, | |
is_valid_file: Optional[Callable[[str], bool]] = None, | |
) -> None: | |
super(DatasetFolder, self).__init__(root, transform=transform, | |
target_transform=target_transform) | |
classes, class_to_idx = self._find_classes(self.root) | |
samples = make_dataset(self.root, class_to_idx, extensions, is_valid_file) | |
if len(samples) == 0: | |
msg = "Found 0 files in subfolders of: {}\n".format(self.root) | |
if extensions is not None: | |
msg += "Supported extensions are: {}".format(",".join(extensions)) | |
raise RuntimeError(msg) | |
self.loader = loader | |
self.extensions = extensions | |
self.classes = classes | |
self.class_to_idx = class_to_idx | |
self.samples = samples | |
self.targets = [s[1] for s in samples] | |
def _find_classes(self, dir: str) -> Tuple[List[str], Dict[str, int]]: | |
""" | |
Finds the class folders in a dataset. | |
Args: | |
dir (string): Root directory path. | |
Returns: | |
tuple: (classes, class_to_idx) where classes are relative to (dir), and class_to_idx is a dictionary. | |
Ensures: | |
No class is a subdirectory of another. | |
""" | |
classes = [d.name for d in os.scandir(dir) if d.is_dir()] | |
classes.sort() | |
class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)} | |
return classes, class_to_idx | |
def __getitem__(self, index: int) -> Tuple[Any, Any]: | |
""" | |
Args: | |
index (int): Index | |
Returns: | |
tuple: (sample, target) where target is class_index of the target class. | |
""" | |
while True: | |
try: | |
path, target = self.samples[index] | |
sample = self.loader(path) | |
break | |
except Exception as e: | |
print(e) | |
index = random.randint(0, len(self.samples) - 1) | |
if self.transform is not None: | |
sample = self.transform(sample) | |
if self.target_transform is not None: | |
target = self.target_transform(target) | |
return sample, target | |
def __len__(self) -> int: | |
return len(self.samples) | |
IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp') | |
def pil_loader(path: str) -> Image.Image: | |
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) | |
with open(path, 'rb') as f: | |
img = Image.open(f) | |
return img.convert('RGB') | |
# TODO: specify the return type | |
def accimage_loader(path: str) -> Any: | |
import accimage | |
try: | |
return accimage.Image(path) | |
except IOError: | |
# Potentially a decoding problem, fall back to PIL.Image | |
return pil_loader(path) | |
def default_loader(path: str) -> Any: | |
from torchvision import get_image_backend | |
if get_image_backend() == 'accimage': | |
return accimage_loader(path) | |
else: | |
return pil_loader(path) | |
class RvlcdipDatasetFolder(VisionDataset): | |
def __init__( | |
self, | |
root: str, | |
loader: Callable[[str], Any], | |
extensions: Optional[Tuple[str, ...]] = None, | |
transform: Optional[Callable] = None, | |
target_transform: Optional[Callable] = None, | |
split: str = None, | |
dataset_size: Optional[int] = None | |
) -> None: | |
super().__init__(root, transform=transform, target_transform=target_transform) | |
self.dataset_size = int(dataset_size) if dataset_size is not None else 42948004 | |
classes = ["letter", | |
"form", | |
"email", | |
"handwritten", | |
"advertisement", | |
"scientific report", | |
"scientific publication", | |
"specification", | |
"file folder", | |
"news article", | |
"budget", | |
"invoice", | |
"presentation", | |
"questionnaire", | |
"resume", | |
"memo"] | |
class_to_idx = {c: i for i, c in enumerate(classes)} | |
with open(os.path.join(self.root, "labels", split + ".txt"), "r") as f: | |
labels = f.read().splitlines() | |
samples = [(line.split()[0], int(line.split()[1])) for line in labels] | |
try: | |
assert len(samples) > 0 and os.path.exists(os.path.join(self.root, "images", samples[0][0])) | |
except: | |
msg = "Found 0 files in subfolders of: {}\n".format(self.root) | |
msg += "Expected first file: {}".format(os.path.join(self.root, "images", samples[0][0])) | |
raise RuntimeError(msg) | |
self.loader = loader | |
self.extensions = extensions | |
self.classes = classes | |
self.class_to_idx = class_to_idx | |
self.samples = samples | |
self.targets = [s[1] for s in samples] | |
def __getitem__(self, index: int) -> Tuple[Any, Any]: | |
""" | |
Args: | |
index (int): Index | |
Returns: | |
tuple: (sample, target) where target is class_index of the target class. | |
""" | |
while True: | |
try: | |
path, target = self.samples[index] | |
sample = self.loader(os.path.join(self.root, "images", path)) | |
break | |
except Exception as e: | |
print(e) | |
index = random.randint(0, len(self.samples) - 1) | |
if self.transform is not None: | |
sample = self.transform(sample) | |
if self.target_transform is not None: | |
target = self.target_transform(target) | |
return sample, target | |
def __len__(self) -> int: | |
return len(self.samples) | |
class RvlcdipImageFolder(RvlcdipDatasetFolder): | |
def __init__( | |
self, | |
root: str, | |
transform: Optional[Callable] = None, | |
target_transform: Optional[Callable] = None, | |
loader: Callable[[str], Any] = default_loader, | |
split: str = None, | |
dataset_size: Optional[int] = None | |
): | |
super().__init__(root, loader, IMG_EXTENSIONS if split is None else None, | |
transform=transform, | |
target_transform=target_transform, | |
split=split, | |
dataset_size=dataset_size) | |
self.imgs = self.samples | |