Tzktz's picture
Upload 7664 files
6fc683c verified
import os
import sys
import time
import logging
from tqdm import tqdm
import torch
from fairseq import utils, tasks, options
from fairseq.checkpoint_utils import load_model_ensemble_and_task
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from torch import Tensor
from typing import Dict, List, Optional
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
logger = logging.getLogger("inference")
def write_result(results, output_file):
with open(output_file, 'w') as f:
for line in results:
f.write(line + '\n')
@torch.no_grad()
def fairseq_generate(data_lines, cfg, models, task, batch_size, device):
# fairseq original decoding implementation
src_dict = task.source_dictionary
tgt_dict = task.target_dictionary
generator = task.build_generator(models, cfg.generation)
data_size = len(data_lines)
all_results = []
logger.info(f'Fairseq generate batch {batch_size}')
start = time.perf_counter()
for start_idx in tqdm(range(0, data_size, batch_size)):
batch_lines = [line for line in data_lines[start_idx: min(start_idx + batch_size, data_size)]]
batch_ids = [src_dict.encode_line(sentence, add_if_not_exist=False).long() for sentence in batch_lines]
lengths = torch.LongTensor([t.numel() for t in batch_ids])
batch_dataset = task.build_dataset_for_inference(batch_ids, lengths)
batch = batch_dataset.collater(batch_dataset)
batch = utils.apply_to_sample(lambda t: t.to(device), batch)
translations = generator.generate(models, batch, prefix_tokens=None)
results = []
for id, hypos in zip(batch["id"].tolist(), translations):
results.append((id, hypos))
batched_hypos = [hypos for _, hypos in sorted(results, key=lambda x: x[0])]
all_results.extend([tgt_dict.string(hypos[0]['tokens']) for hypos in batched_hypos])
delta = time.perf_counter() - start
remove_bpe_results = [line.replace('@@ ', '') for line in all_results]
return remove_bpe_results, delta
@torch.no_grad()
def baseline_forward_decoder(model,
input_tokens,
encoder_out: Dict[str, List[Tensor]],
incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
parallel_forward_start_pos=None,
temperature: float = 1.0):
decoder_out = model.decoder.forward(input_tokens,
encoder_out=encoder_out,
incremental_state=incremental_state,
parallel_forward_start_pos=parallel_forward_start_pos)
decoder_out_tuple = (decoder_out[0].div_(temperature), decoder_out[1])
pred_tokens = torch.argmax(decoder_out_tuple[0], dim=-1).squeeze(0)
return pred_tokens
@torch.no_grad()
def baseline_generate(data_lines, model, task, batch_size, device, max_len=200):
# simplified AR greedy decoding
src_dict = task.source_dictionary
tgt_dict = task.target_dictionary
data_size = len(data_lines)
all_results = []
start = time.perf_counter()
logger.info(f'Baseline generate')
for start_idx in tqdm(range(0, data_size, batch_size)):
batch_size = min(data_size - start_idx, batch_size)
batch_lines = [line for line in data_lines[start_idx: start_idx + batch_size]]
batch_ids = [src_dict.encode_line(sentence, add_if_not_exist=False).long() for sentence in batch_lines]
lengths = torch.LongTensor([t.numel() for t in batch_ids])
batch_dataset = task.build_dataset_for_inference(batch_ids, lengths)
batch_dataset.left_pad_source = False
batch = batch_dataset.collater(batch_dataset)
batch = utils.apply_to_sample(lambda t: t.to(device), batch)
net_input = batch['net_input']
encoder_out = model.encoder.forward(net_input['src_tokens'], net_input['src_lengths'])
incremental_state = torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]],
torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {}))
batch_tokens = [[tgt_dict.eos()] for _ in range(batch_size)]
finish_list = []
for step in range(0, max_len):
cur_input_tokens = torch.tensor(batch_tokens).to(device).long()
pred_tokens = baseline_forward_decoder(model,
cur_input_tokens,
encoder_out,
incremental_state=incremental_state)
for i, pred_tok in enumerate(pred_tokens):
if len(batch_tokens[i]) == 1:
batch_tokens[i].append(pred_tok.item())
else:
if batch_tokens[i][-1] != tgt_dict.eos():
batch_tokens[i].append(pred_tok.item())
else:
if i not in finish_list:
finish_list.append(i)
batch_tokens[i].append(tgt_dict.eos())
if len(finish_list) == batch_size:
break
batch_tokens = [y for x, y in sorted(zip(batch['id'].cpu().tolist(), batch_tokens))]
for tokens in batch_tokens:
all_results.append(tgt_dict.string(tokens[1:]))
remove_bpe_results = [line.replace('@@ ', '') for line in all_results]
delta = time.perf_counter() - start
return remove_bpe_results, delta
@torch.no_grad()
def forward_decoder(model, input_tokens, encoder_out, incremental_state=None,
parallel_forward_start_pos=None, temperature=1.0, beta=1, tau=0.0):
decoder_out = model.decoder.forward(input_tokens,
encoder_out=encoder_out,
incremental_state=incremental_state,
parallel_forward_start_pos=parallel_forward_start_pos)
decoder_out_tuple = (decoder_out[0].div_(temperature), decoder_out[1])
topk_scores, indexes = torch.topk(decoder_out_tuple[0], beta, dim=-1)
topk_scores_list = topk_scores.tolist()
indexes_list = indexes.tolist()
for i in range(indexes.size(0)):
for j in range(indexes.size(1)):
for k, s in enumerate(topk_scores_list[i][j]):
if topk_scores_list[i][j][0] - s > tau:
indexes_list[i][j][k] = -1
return indexes_list
def gad_generate(data_lines, model, AR_model, task, block_size, batch_size, device, beta=1, tau=0, max_len=200):
# Generalized Aggressive Decoding
src_dict = task.source_dictionary
tgt_dict = task.target_dictionary
data_size = len(data_lines)
all_results = []
logger.info(f'GAD generate')
start = time.perf_counter()
for start_idx in tqdm(range(0, data_size, batch_size)):
batch_size = min(data_size - start_idx, batch_size)
batch_lines = [line for line in data_lines[start_idx: start_idx + batch_size]]
batch_ids = [src_dict.encode_line(sentence, add_if_not_exist=False).long() for sentence in batch_lines]
lengths = torch.LongTensor([t.numel() for t in batch_ids])
batch_dataset = task.build_dataset_for_inference(batch_ids, lengths)
batch_dataset.left_pad_source = False
batch = batch_dataset.collater(batch_dataset)
batch = utils.apply_to_sample(lambda t: t.to(device), batch)
net_input = batch['net_input']
AR_encoder_out = AR_model.encoder.forward(net_input['src_tokens'], net_input['src_lengths'])
encoder_out = model.encoder.forward(net_input['src_tokens'], net_input['src_lengths'])
sentences = [[tgt_dict.eos()] for _ in range(batch_size)]
prev_output_tokens = [[tgt_dict.unk()] * block_size for _ in range(batch_size)]
start_pos_list = [0] * batch_size
finish_list = []
for step in range(0, max_len):
prev_output_tokens, start_pos_list = gad_forward(start_pos_list, block_size, batch_size,
tgt_dict, prev_output_tokens,
encoder_out, AR_encoder_out, model, AR_model, beta, tau)
for i, start_pos in enumerate(start_pos_list):
if i not in finish_list:
if start_pos == -1:
finish_list.append(i)
sentences[i] = prev_output_tokens[i]
if len(finish_list) == batch_size:
break
batch_sents = [y for x, y in sorted(zip(batch['id'].cpu().tolist(), sentences))]
for s in batch_sents:
all_results.append(tgt_dict.string(s))
remove_bpe_results = [line.replace('@@ ', '') for line in all_results]
delta = time.perf_counter() - start
return remove_bpe_results, delta
def gad_forward(start_pos_list, block_size, batch_size, tgt_dict, prev_output_tokens,
encoder_out, AR_encoder_out, model, AR_model, beta, tau, max_len=200):
pad_tokens = [[tgt_dict.pad()] * (max_len + block_size) for _ in range(batch_size)]
for i in range(batch_size):
pad_tokens[i][:len(prev_output_tokens[i])] = prev_output_tokens[i]
output_tokens = torch.tensor(pad_tokens).to(device)
output_tokens = output_tokens[:, : output_tokens.ne(tgt_dict.pad()).sum(1).max()]
_, tensor_tokens = model.decoder(
normalize=False,
prev_output_tokens=output_tokens,
encoder_out=encoder_out,
).max(-1)
_tokens = tensor_tokens.tolist()
for i, start_pos in enumerate(start_pos_list):
if start_pos_list[i] != -1:
output_tokens[i, start_pos:start_pos + block_size] = tensor_tokens[i, start_pos:start_pos + block_size]
prev_output_tokens[i][start_pos:start_pos + block_size] = _tokens[i][start_pos:start_pos + block_size]
append_eos = torch.tensor([[tgt_dict.eos()] for _ in range(batch_size)]).to(device)
cur_span_input_tokens = torch.cat((append_eos, output_tokens), dim=-1)
AR_verify_tokens = forward_decoder(AR_model, cur_span_input_tokens, AR_encoder_out, beta=beta, tau=tau)
next_output_tokens = prev_output_tokens.copy()
for i in range(batch_size):
if start_pos_list[i] != -1:
bifurcation = block_size
for j, (token, AR_verify_token) in enumerate(
zip(prev_output_tokens[i][start_pos_list[i]:], AR_verify_tokens[i][start_pos_list[i]:-1])):
if token not in AR_verify_token:
bifurcation = j
break
next_output_tokens[i] = prev_output_tokens[i][:start_pos_list[i] + bifurcation] + \
[AR_verify_tokens[i][start_pos_list[i] + bifurcation][0]] + \
[tgt_dict.unk()] * block_size
find_eos = False
for j, o in enumerate(next_output_tokens[i][start_pos_list[i]:start_pos_list[i] + bifurcation + 1]):
if o == tgt_dict.eos() or start_pos_list[i] + j == max_len:
next_output_tokens[i] = next_output_tokens[i][:start_pos_list[i] + j]
start_pos_list[i] = -1
find_eos = True
break
if not find_eos:
start_pos_list[i] = start_pos_list[i] + bifurcation + 1
return next_output_tokens, start_pos_list
if __name__ == '__main__':
parser = options.get_generation_parser()
parser.add_argument('--input-path', type=str, required=True,
help='path to eval file')
parser.add_argument('--output-path', type=str, default=None,
help='path to output file')
parser.add_argument('--AR-path', type=str, default=None,
help='path to AR model')
parser.add_argument('--strategy', type=str, default='fairseq',
help='decoding strategy, choose from: fairseq, AR, gad')
parser.add_argument('--batch', type=int, default=None,
help='batch size')
parser.add_argument('--block-size', type=int, default=5,
help='block size')
parser.add_argument('--beta', type=int, default=1,
help='top-beta hyperparameter')
parser.add_argument('--tau', type=float, default=0,
help='tolerance hyperparameter')
cmd_args = options.parse_args_and_arch(parser)
cmd_args.input_path = os.path.expanduser(cmd_args.input_path)
cmd_args.output_path = os.path.expanduser(cmd_args.output_path)
cfg = convert_namespace_to_omegaconf(cmd_args)
task = tasks.setup_task(cfg.task)
# NAR drafter
logger.info("loading model(s) from {}".format(cfg.common_eval.path))
models, _model_args, _model_task = load_model_ensemble_and_task(filenames=[cfg.common_eval.path], task=task)
if cmd_args.cpu:
device = torch.device('cpu')
else:
device = torch.device('cuda')
model = models[0].to(device).eval()
if cfg.common.fp16:
logging.info("NAR fp16 enabled!")
model.half()
# AR verifier
AR_model = None
AR_models = None
_AR_model_task = None
if cmd_args.AR_path is not None:
AR_models, _AR_model_args, _AR_model_task = load_model_ensemble_and_task(filenames=[cmd_args.AR_path],
arg_overrides={'data': cfg.task.data})
if cfg.common.fp16:
logging.info("AR fp16 enabled!")
for AR_model in AR_models:
AR_model.half()
AR_model = AR_models[0].to(device).eval()
logging.info("AR model loaded!")
with open(cmd_args.input_path, 'r') as f:
bpe_sents = [l.strip() for l in f.readlines()]
if cmd_args.strategy == 'AR':
logger.info("Decoding Strategy: Simplified AR")
remove_bpe_results, delta = baseline_generate(bpe_sents, AR_model, _AR_model_task, cmd_args.batch, device)
logger.info(f'Simplified AR generate: {delta}')
elif cmd_args.strategy == 'gad':
logger.info("Decoding Strategy: GAD")
remove_bpe_results, delta = gad_generate(bpe_sents, model, AR_model, task, cmd_args.block_size, cmd_args.batch,
device, beta=cmd_args.beta, tau=cmd_args.tau)
logger.info(f'GAD generate: {delta}')
else:
logger.info("Decoding Strategy: fairseq")
remove_bpe_results, delta = fairseq_generate(bpe_sents, cfg, AR_models, _AR_model_task, cmd_args.batch, device)
logger.info(f'Fairseq generate batch {cmd_args.batch}, beam {cfg.generation.beam}: {delta}')
if cmd_args.output_path is not None:
write_result(remove_bpe_results, cmd_args.output_path)