Spaces:
Sleeping
Sleeping
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import logging | |
| import math | |
| from collections.abc import Collection | |
| from dataclasses import dataclass, field | |
| from typing import List | |
| import torch | |
| import torch.distributed as dist | |
| import torch.optim | |
| from fairseq.dataclass import FairseqDataclass | |
| from fairseq.optim import FairseqOptimizer, register_optimizer | |
| from fairseq.optim.fused_adam import get_fused_adam_class | |
| from omegaconf import II, DictConfig | |
| logger = logging.getLogger(__name__) | |
| class FairseqAdamConfig(FairseqDataclass): | |
| adam_betas: str = field( | |
| default="(0.9, 0.999)", metadata={"help": "betas for Adam optimizer"} | |
| ) | |
| adam_eps: float = field( | |
| default=1e-8, metadata={"help": "epsilon for Adam optimizer"} | |
| ) | |
| weight_decay: float = field(default=0.0, metadata={"help": "weight decay"}) | |
| use_old_adam: bool = field( | |
| default=False, metadata={"help": "Use fairseq.optim.adam.Adam"} | |
| ) | |
| # TODO common vars below in parent | |
| tpu: bool = II("common.tpu") | |
| lr: List[float] = II("optimization.lr") | |
| class FairseqAdam(FairseqOptimizer): | |
| """Adam optimizer for fairseq. | |
| Important note: this optimizer corresponds to the "AdamW" variant of | |
| Adam in its weight decay behavior. As such, it is most closely | |
| analogous to torch.optim.AdamW from PyTorch. | |
| """ | |
| def __init__(self, cfg: DictConfig, params): | |
| super().__init__(cfg) | |
| fused_adam_cls = get_fused_adam_class() | |
| use_fused_adam = ( | |
| not getattr(cfg, "use_old_adam", False) | |
| and fused_adam_cls is not None | |
| and torch.cuda.is_available() | |
| ) | |
| if getattr(cfg, "tpu", False): | |
| # on TPUs we use the Adam defined here, since it | |
| # automatically casts gradients to FP32 | |
| self._optimizer = Adam(params, **self.optimizer_config) | |
| elif use_fused_adam: | |
| logger.info("using FusedAdam") | |
| self._optimizer = fused_adam_cls(params, **self.optimizer_config) | |
| else: | |
| self._optimizer = Adam(params, **self.optimizer_config) | |
| def optimizer_config(self): | |
| """ | |
| Return a kwarg dictionary that will be used to override optimizer | |
| args stored in checkpoints. This allows us to load a checkpoint and | |
| resume training using a different set of optimizer args, e.g., with a | |
| different learning rate. | |
| """ | |
| return { | |
| "lr": self.cfg.lr[0] | |
| if isinstance(self.cfg.lr, Collection) | |
| else self.cfg.lr, | |
| "betas": eval(self.cfg.adam_betas), | |
| "eps": self.cfg.adam_eps, | |
| "weight_decay": self.cfg.weight_decay, | |
| } | |
| def average_params(self): | |
| """Reduce Params is only used during BMUF distributed training.""" | |
| state_dict = self.optimizer.state_dict() | |
| total_gpus = float(dist.get_world_size()) | |
| for _, value in state_dict["state"].items(): | |
| value["exp_avg"] /= total_gpus | |
| value["exp_avg_sq"] /= total_gpus | |
| dist.all_reduce(value["exp_avg"], op=dist.ReduceOp.SUM) | |
| dist.all_reduce(value["exp_avg_sq"], op=dist.ReduceOp.SUM) | |
| class Adam(torch.optim.Optimizer): | |
| r"""Implements Adam algorithm. | |
| This implementation is modified from torch.optim.Adam based on: | |
| `Fixed Weight Decay Regularization in Adam` | |
| (see https://arxiv.org/abs/1711.05101) | |
| It has been proposed in `Adam: A Method for Stochastic Optimization`_. | |
| Args: | |
| params (iterable): iterable of parameters to optimize or dicts defining | |
| parameter groups | |
| lr (float, optional): learning rate (default: 1e-3) | |
| betas (Tuple[float, float], optional): coefficients used for computing | |
| running averages of gradient and its square (default: (0.9, 0.999)) | |
| eps (float, optional): term added to the denominator to improve | |
| numerical stability (default: 1e-8) | |
| weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | |
| amsgrad (boolean, optional): whether to use the AMSGrad variant of this | |
| algorithm from the paper `On the Convergence of Adam and Beyond`_ | |
| .. _Adam\: A Method for Stochastic Optimization: | |
| https://arxiv.org/abs/1412.6980 | |
| .. _On the Convergence of Adam and Beyond: | |
| https://openreview.net/forum?id=ryQu7f-RZ | |
| """ | |
| def __init__( | |
| self, | |
| params, | |
| lr=1e-3, | |
| betas=(0.9, 0.999), | |
| eps=1e-8, | |
| weight_decay=0, | |
| amsgrad=False, | |
| ): | |
| defaults = dict( | |
| lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad | |
| ) | |
| super(Adam, self).__init__(params, defaults) | |
| def supports_memory_efficient_fp16(self): | |
| return True | |
| def supports_flat_params(self): | |
| return True | |
| def step(self, closure=None): | |
| """Performs a single optimization step. | |
| Args: | |
| closure (callable, optional): A closure that reevaluates the model | |
| and returns the loss. | |
| """ | |
| loss = None | |
| if closure is not None: | |
| loss = closure() | |
| for group in self.param_groups: | |
| for p in group["params"]: | |
| if p.grad is None: | |
| continue | |
| grad = p.grad.data | |
| if grad.dtype in {torch.float16, torch.bfloat16}: | |
| grad = grad.float() | |
| if grad.is_sparse: | |
| raise RuntimeError( | |
| "Adam does not support sparse gradients, please consider SparseAdam instead" | |
| ) | |
| amsgrad = group.get("amsgrad", False) | |
| p_data_fp32 = p.data | |
| if p.data.dtype in {torch.float16, torch.bfloat16}: | |
| p_data_fp32 = p_data_fp32.float() | |
| state = self.state[p] | |
| # State initialization | |
| if len(state) == 0: | |
| state["step"] = 0 | |
| # Exponential moving average of gradient values | |
| state["exp_avg"] = torch.zeros_like(p_data_fp32) | |
| # Exponential moving average of squared gradient values | |
| state["exp_avg_sq"] = torch.zeros_like(p_data_fp32) | |
| if amsgrad: | |
| # Maintains max of all exp. moving avg. of sq. grad. values | |
| state["max_exp_avg_sq"] = torch.zeros_like(p_data_fp32) | |
| else: | |
| state["exp_avg"] = state["exp_avg"].to(p_data_fp32) | |
| state["exp_avg_sq"] = state["exp_avg_sq"].to(p_data_fp32) | |
| if amsgrad: | |
| state["max_exp_avg_sq"] = state["max_exp_avg_sq"].to( | |
| p_data_fp32 | |
| ) | |
| exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] | |
| if amsgrad: | |
| max_exp_avg_sq = state["max_exp_avg_sq"] | |
| beta1, beta2 = group["betas"] | |
| state["step"] += 1 | |
| # Decay the first and second moment running average coefficient | |
| exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) | |
| exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) | |
| if amsgrad: | |
| # Maintains the maximum of all 2nd moment running avg. till now | |
| torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) | |
| # Use the max. for normalizing running avg. of gradient | |
| denom = max_exp_avg_sq.sqrt().add_(group["eps"]) | |
| else: | |
| denom = exp_avg_sq.sqrt().add_(group["eps"]) | |
| bias_correction1 = 1 - beta1 ** state["step"] | |
| bias_correction2 = 1 - beta2 ** state["step"] | |
| step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1 | |
| if group["weight_decay"] != 0: | |
| p_data_fp32.add_( | |
| p_data_fp32, alpha=-group["weight_decay"] * group["lr"] | |
| ) | |
| p_data_fp32.addcdiv_(exp_avg, denom, value=-step_size) | |
| if p.data.dtype in {torch.float16, torch.bfloat16}: | |
| p.data.copy_(p_data_fp32) | |
| return loss | |