Spaces:
Sleeping
Sleeping
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from fairseq import utils | |
| from fairseq.incremental_decoding_utils import with_incremental_state | |
| from fairseq.modules.fairseq_dropout import FairseqDropout | |
| from fairseq.modules.unfold import unfold1d | |
| def LightweightConv( | |
| input_size, | |
| kernel_size=1, | |
| padding_l=None, | |
| num_heads=1, | |
| weight_dropout=0.0, | |
| weight_softmax=False, | |
| bias=False, | |
| ): | |
| if torch.cuda.is_available(): | |
| try: | |
| from fairseq.modules.lightconv_layer import LightconvLayer | |
| return LightconvLayer( | |
| input_size, | |
| kernel_size=kernel_size, | |
| padding_l=padding_l, | |
| num_heads=num_heads, | |
| weight_dropout=weight_dropout, | |
| weight_softmax=weight_softmax, | |
| bias=bias, | |
| ) | |
| except ImportError as e: | |
| print(e) | |
| return LightweightConv1dTBC( | |
| input_size, | |
| kernel_size=kernel_size, | |
| padding_l=padding_l, | |
| num_heads=num_heads, | |
| weight_dropout=weight_dropout, | |
| weight_softmax=weight_softmax, | |
| bias=bias, | |
| ) | |
| class LightweightConv1d(nn.Module): | |
| """Lightweight Convolution assuming the input is BxCxT | |
| This is just an example that explains LightConv clearer than the TBC version. | |
| We don't use this module in the model. | |
| Args: | |
| input_size: # of channels of the input and output | |
| kernel_size: convolution channels | |
| padding: padding | |
| num_heads: number of heads used. The weight is of shape | |
| `(num_heads, 1, kernel_size)` | |
| weight_softmax: normalize the weight with softmax before the convolution | |
| Shape: | |
| Input: BxCxT, i.e. (batch_size, input_size, timesteps) | |
| Output: BxCxT, i.e. (batch_size, input_size, timesteps) | |
| Attributes: | |
| weight: the learnable weights of the module of shape | |
| `(num_heads, 1, kernel_size)` | |
| bias: the learnable bias of the module of shape `(input_size)` | |
| """ | |
| def __init__( | |
| self, | |
| input_size, | |
| kernel_size=1, | |
| padding=0, | |
| num_heads=1, | |
| weight_softmax=False, | |
| bias=False, | |
| weight_dropout=0.0, | |
| ): | |
| super().__init__() | |
| self.input_size = input_size | |
| self.kernel_size = kernel_size | |
| self.num_heads = num_heads | |
| self.padding = padding | |
| self.weight_softmax = weight_softmax | |
| self.weight = nn.Parameter(torch.Tensor(num_heads, 1, kernel_size)) | |
| if bias: | |
| self.bias = nn.Parameter(torch.Tensor(input_size)) | |
| else: | |
| self.bias = None | |
| self.weight_dropout_module = FairseqDropout( | |
| weight_dropout, module_name=self.__class__.__name__ | |
| ) | |
| self.reset_parameters() | |
| def reset_parameters(self): | |
| nn.init.xavier_uniform_(self.weight) | |
| if self.bias is not None: | |
| nn.init.constant_(self.bias, 0.0) | |
| def forward(self, input): | |
| """ | |
| input size: B x C x T | |
| output size: B x C x T | |
| """ | |
| B, C, T = input.size() | |
| H = self.num_heads | |
| weight = self.weight | |
| if self.weight_softmax: | |
| weight = F.softmax(weight, dim=-1) | |
| weight = self.weight_dropout_module(weight) | |
| # Merge every C/H entries into the batch dimension (C = self.input_size) | |
| # B x C x T -> (B * C/H) x H x T | |
| # One can also expand the weight to C x 1 x K by a factor of C/H | |
| # and do not reshape the input instead, which is slow though | |
| input = input.view(-1, H, T) | |
| output = F.conv1d(input, weight, padding=self.padding, groups=self.num_heads) | |
| output = output.view(B, C, T) | |
| if self.bias is not None: | |
| output = output + self.bias.view(1, -1, 1) | |
| return output | |
| class LightweightConv1dTBC(nn.Module): | |
| """Lightweight Convolution assuming the input is TxBxC | |
| Args: | |
| input_size: # of channels of the input | |
| kernel_size: convolution channels | |
| padding_l: padding to the left when using "same" padding | |
| num_heads: number of heads used. The weight is of shape (num_heads, 1, kernel_size) | |
| weight_dropout: the drop rate of the DropConnect to drop the weight | |
| weight_softmax: normalize the weight with softmax before the convolution | |
| bias: use bias | |
| Shape: | |
| Input: TxBxC, i.e. (timesteps, batch_size, input_size) | |
| Output: TxBxC, i.e. (timesteps, batch_size, input_size) | |
| Attributes: | |
| weight: the learnable weights of the module of shape | |
| `(num_heads, 1, kernel_size)` | |
| bias: the learnable bias of the module of shape `(input_size)` | |
| """ | |
| def __init__( | |
| self, | |
| input_size, | |
| kernel_size=1, | |
| padding_l=None, | |
| num_heads=1, | |
| weight_dropout=0.0, | |
| weight_softmax=False, | |
| bias=False, | |
| ): | |
| super().__init__() | |
| self.input_size = input_size | |
| self.kernel_size = kernel_size | |
| self.padding_l = padding_l | |
| self.num_heads = num_heads | |
| self.weight_dropout_module = FairseqDropout( | |
| weight_dropout, module_name=self.__class__.__name__ | |
| ) | |
| self.weight_softmax = weight_softmax | |
| self.weight = nn.Parameter(torch.Tensor(num_heads, 1, kernel_size)) | |
| if bias: | |
| self.bias = nn.Parameter(torch.Tensor(input_size)) | |
| else: | |
| self.bias = None | |
| self.reset_parameters() | |
| self.onnx_trace = False | |
| def reset_parameters(self): | |
| nn.init.xavier_uniform_(self.weight) | |
| if self.bias is not None: | |
| nn.init.constant_(self.bias, 0.0) | |
| def forward(self, x, incremental_state=None, unfold=False): | |
| """Assuming the input, x, of the shape T x B x C and producing an output in the shape T x B x C | |
| args: | |
| x: Input of shape T x B x C, i.e. (timesteps, batch_size, input_size) | |
| incremental_state: A dict to keep the state | |
| unfold: unfold the input or not. If not, we use the matrix trick instead | |
| """ | |
| unfold = unfold or (incremental_state is not None) | |
| if unfold: | |
| output = self._forward_unfolded(x, incremental_state) | |
| else: | |
| output = self._forward_expanded(x, incremental_state) | |
| if self.bias is not None: | |
| output = output + self.bias.view(1, 1, -1) | |
| return output | |
| def prepare_for_onnx_export_(self): | |
| self.onnx_trace = True | |
| def _forward_unfolded(self, x, incremental_state): | |
| """The conventional implementation of convolutions. | |
| Unfolding the input by having a window shifting to the right.""" | |
| T, B, C = x.size() | |
| K, H = self.kernel_size, self.num_heads | |
| R = C // H | |
| assert R * H == C == self.input_size | |
| weight = self.weight.view(H, K) | |
| if incremental_state is not None: | |
| input_buffer = self._get_input_buffer(incremental_state) | |
| if input_buffer is None: | |
| input_buffer = x.new() | |
| x_unfold = torch.cat([input_buffer, x.unsqueeze(3)], dim=3) | |
| if self.kernel_size > 1: | |
| self._set_input_buffer( | |
| incremental_state, x_unfold[:, :, :, -self.kernel_size + 1 :] | |
| ) | |
| x_unfold = x_unfold.view(T * B * H, R, -1) | |
| else: | |
| # unfold the input: T x B x C --> T' x B x C x K | |
| x_unfold = unfold1d(x, self.kernel_size, self.padding_l, 0) | |
| x_unfold = x_unfold.view(T * B * H, R, K) | |
| if self.weight_softmax: | |
| weight = utils.softmax(weight, dim=1, onnx_trace=self.onnx_trace).type_as( | |
| weight | |
| ) | |
| if incremental_state is not None: | |
| weight = weight[:, -x_unfold.size(2) :] | |
| K = weight.size(1) | |
| weight = ( | |
| weight.view(1, H, K).expand(T * B, H, K).contiguous().view(T * B * H, K, 1) | |
| ) | |
| weight = self.weight_dropout_module(weight) | |
| output = torch.bmm(x_unfold, weight) # T*B*H x R x 1 | |
| output = output.view(T, B, C) | |
| return output | |
| def _forward_expanded(self, x, incremental_state): | |
| """Turn the convolution filters into band matrices and do matrix multiplication. | |
| This is faster when the sequence is short, but less memory efficient. | |
| This is not used in the decoder during inference. | |
| """ | |
| T, B, C = x.size() | |
| K, H = self.kernel_size, self.num_heads | |
| R = C // H | |
| assert R * H == C == self.input_size | |
| weight = self.weight.view(H, K) | |
| if self.weight_softmax: | |
| weight = utils.softmax(weight, dim=1, onnx_trace=self.onnx_trace).type_as( | |
| weight | |
| ) | |
| weight = weight.view(1, H, K).expand(T * B, H, K).contiguous() | |
| weight = weight.view(T, B * H, K).transpose(0, 1) | |
| x = x.view(T, B * H, R).transpose(0, 1) | |
| P = self.padding_l | |
| if K > T and P == K - 1: | |
| weight = weight.narrow(2, K - T, T) | |
| K, P = T, T - 1 | |
| # turn the convolution filters into band matrices | |
| weight_expanded = weight.new_zeros(B * H, T, T + K - 1, requires_grad=False) | |
| weight_expanded.as_strided((B * H, T, K), (T * (T + K - 1), T + K, 1)).copy_( | |
| weight | |
| ) | |
| weight_expanded = weight_expanded.narrow(2, P, T) | |
| weight_expanded = self.weight_dropout_module(weight_expanded) | |
| output = torch.bmm(weight_expanded, x) | |
| output = output.transpose(0, 1).contiguous().view(T, B, C) | |
| return output | |
| def reorder_incremental_state(self, incremental_state, new_order): | |
| input_buffer = self._get_input_buffer(incremental_state) | |
| if input_buffer is not None: | |
| input_buffer = input_buffer.index_select(1, new_order) | |
| self._set_input_buffer(incremental_state, input_buffer) | |
| def _get_input_buffer(self, incremental_state): | |
| return utils.get_incremental_state(self, incremental_state, "input_buffer") | |
| def _set_input_buffer(self, incremental_state, new_buffer): | |
| return utils.set_incremental_state( | |
| self, incremental_state, "input_buffer", new_buffer | |
| ) | |
| def extra_repr(self): | |
| s = "{}, kernel_size={}, padding_l={}, num_heads={}, weight_softmax={}, bias={}".format( | |
| self.input_size, | |
| self.kernel_size, | |
| self.padding_l, | |
| self.num_heads, | |
| self.weight_softmax, | |
| self.bias is not None, | |
| ) | |
| if self.weight_dropout_module.p > 0.0: | |
| s += ", weight_dropout={}".format(self.weight_dropout_module.p) | |
| return s | |