Spaces:
Sleeping
Sleeping
import attr | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
logit_laplace_eps: float = 0.1 | |
class Conv2d(nn.Module): | |
n_in: int = attr.ib(validator=lambda i, a, x: x >= 1) | |
n_out: int = attr.ib(validator=lambda i, a, x: x >= 1) | |
kw: int = attr.ib(validator=lambda i, a, x: x >= 1 and x % 2 == 1) | |
use_float16: bool = attr.ib(default=True) | |
device: torch.device = attr.ib(default=torch.device('cpu')) | |
requires_grad: bool = attr.ib(default=False) | |
def __attrs_post_init__(self) -> None: | |
super().__init__() | |
w = torch.empty((self.n_out, self.n_in, self.kw, self.kw), dtype=torch.float32, | |
device=self.device, requires_grad=self.requires_grad) | |
w.normal_(std=1 / math.sqrt(self.n_in * self.kw ** 2)) | |
b = torch.zeros((self.n_out,), dtype=torch.float32, device=self.device, | |
requires_grad=self.requires_grad) | |
self.w, self.b = nn.Parameter(w), nn.Parameter(b) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
if self.use_float16 and 'cuda' in self.w.device.type: | |
if x.dtype != torch.float16: | |
x = x.half() | |
w, b = self.w.half(), self.b.half() | |
else: | |
if x.dtype != torch.float32: | |
x = x.float() | |
w, b = self.w, self.b | |
return F.conv2d(x, w, b, padding=(self.kw - 1) // 2) | |
def map_pixels(x: torch.Tensor) -> torch.Tensor: | |
if x.dtype != torch.float: | |
raise ValueError('expected input to have type float') | |
return (1 - 2 * logit_laplace_eps) * x + logit_laplace_eps | |
def unmap_pixels(x: torch.Tensor) -> torch.Tensor: | |
if len(x.shape) != 4: | |
raise ValueError('expected input to be 4d') | |
if x.dtype != torch.float: | |
raise ValueError('expected input to have type float') | |
return torch.clamp((x - logit_laplace_eps) / (1 - 2 * logit_laplace_eps), 0, 1) | |